BACK TO INDEX

Publications of Eduardo D. Sontag jointly with M.A. Al-Radhawi
Articles in journal or book chapters
  1. M.A. Al-Radhawi, D. Angeli, and E.D. Sontag. On structural contraction of biological interaction networks. 2024. Note: To be submitted. Preprint in: arXiv https://doi.org/10.48550/arXiv.2307.13678.Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms.
    Abstract:
    In previous work, we have developed an approach to understanding the long-term dynamics of classes of chemical reaction networks, based on rate-dependent Lyapunov functions. In this paper, we show that stronger notions of convergence can be established by proving contraction with respect to non-standard norms. This enables us to show that such networks entrain to periodic inputs. We illustrate our theory with examples from signaling pathways and genetic circuits.


  2. Z. An, M.A. Al-Radhawi, W. Cho, and E.D. Sontag. Inferring causal connections through embedded physics-informed neural networks (ePINNs): An application to synthetic biology resource competition. 2024. Note: In preparation.
    Abstract:
    Biological systems have been widely studied as complex dynamic systems that evolve with time in response to the internal resources abundance and external perturbations due to their common features. Integration of systems and synthetic biology provides a consolidated framework that draws system-level connections among biology, mathematics, engineering, and computer sciences. One major problem in current synthetic biology research is designing and controlling the synthetic circuits to perform reliable and robust behaviors as they utilize common transcription and translational resources among the circuits and host cells. While cellular resources are often limited, this results in a competition for resources by different genes and circuits, which affect the behaviors of synthetic genetic circuits. The manner competition impacts behavior depends on the “bottleneck” resource. With knowledge of physics laws and underlying mechanisms, the dynamical behaviors of the synthetic circuits can be described by the first principle models, usually represented by a system of ordinary differential equations (ODEs). In this work, we develop the novel embedded PINN (ePINN), which is composed of two nested loss-sharing neural networks to target and improve the unknown dynamics prediction from quantitative time series data. We apply the ePINN approach to identify the mathematical structures of competition phenotypes. Firstly, we use the PINNs approach to infer the model parameters and hidden dynamics from partially known data (including a lack of understanding of the reaction mechanisms or missing experimental data). Secondly, we test how well the algorithms can distinguish and extract the unknown dynamics from noisy data. Thirdly, we study how the synthetic and competing circuits behave in various cases when different particles become a limited resource.


  3. A. Duvall, M. Ali Al-Radhawi, Dhruv D. Jatkar, and E. D. Sontag. Interplay between contractivity and monotonicity for reaction networks. SIAM J Applied Dynamical Systems, 2024. Note: Submitted. Also preprint in https://arxiv.org/abs/2404.18734 .[PDF] Keyword(s): reaction networks, monotone systems, reaction networks, reaction networks, contractive systems.
    Abstract:
    This work studies relationships between monotonicity and contractivity, and applies the results to establish that many reaction networks are weakly contractive, and thus, under appropriate compactness conditions, globally convergent to equilibria. Verification of these properties is achieved through a novel algorithm that can be used to generate cones for an accompanying monotone system. The results given here allow a unified proof of global convergence for several classes of networks that had been previously studied in the literature.


  4. S. Wang, M.A. Al-Radhawi, D.A. Lauffenburger, and E.D. Sontag. How many time-points of single-cell omics data are necessary for recovering biomolecular network dynamics?. npj Systems Biology and Applications, 10, 2024. [PDF] Keyword(s): single-cell data, identifiability, network reconstruction, dynamical systems.
    Abstract:
    Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, which enables the data-driven study of highly complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as the time trajectories of cell states. These ``dynamical phenotypes'' are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high-dimensionality and lack of individual cell traces, three timepoints of single-cell omics data are theoretically necessary and sufficient in order to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more timepoints even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.


  5. M.A. Al-Radhawi, D. Del Vecchio, and E.D. Sontag. Identifying competition phenotypes in synthetic biochemical circuits. IEEE Control Systems Letters, 7:211-216, 2023. Note: (Online published in 2022; in print 2023.). [PDF] Keyword(s): Resource competition, model discrimination, synthetic biology, system identification.
    Abstract:
    Synthetic gene circuits require cellular resources, which are often limited. This leads to competition for resources by different genes, which alter a synthetic genetic circuit's behavior. However, the manner in which competition impacts behavior depends on the identity of the "bottleneck" resource which might be difficult to discern from input-output data. In this paper, we aim at classifying the mathematical structures of resource competition in biochemical circuits. We find that some competition structures can be distinguished by their response to different competitors or resource levels. Specifically, we show that some response curves are always linear, convex, or concave. Furthermore, high levels of certain resources protect the behavior from low competition, while others do not. We also show that competition phenotypes respond differently to various interventions. Such differences can be used to eliminate candidate competition mechanisms when constructing models based on given data. On the other hand, we show that different networks can display mathematically equivalent competition phenotypes.


  6. M.A. Al-Radhawi and E.D. Sontag. Analysis of a reduced model of epithelial-mesenchymal fate determination in cancer metastasis as a singularly-perturbed monotone system. In C.A. Beattie, P. Benner, M. Embree, S. Gugercin, and S. Lefteriu, editors, Realization and model reduction of dynamical systems. Springer Nature, 2022. Note: (Previous version: 2020 preprint in arXiv:1910.11311.). [PDF] Keyword(s): epithelial-mesenchymal transition, miRNA, singular perturbations, monotone systems, oncology, cancer, metastasis, reaction networks, reaction networks, systems biology.
    Abstract:
    Metastasis can occur after malignant cells transition from the epithelial phenotype to the mesenchymal phenotype. This transformation allows cells to migrate via the circulatory system and subsequently settle in distant organs after undergoing the reverse transition. The core gene regulatory network controlling these transitions consists of a system made up of coupled SNAIL/miRNA-34 and ZEB1/miRNA-200 subsystems. In this work, we formulate a mathematical model and analyze its long-term behavior. We start by developing a detailed reaction network with 24 state variables. Assuming fast promoter and mRNA kinetics, we then show how to reduce our model to a monotone four-dimensional system. For the reduced system, monotone dynamical systems theory can be used to prove generic convergence to the set of equilibria for all bounded trajectories. The theory does not apply to the full model, which is not monotone, but we briefly discuss results for singularly-perturbed monotone systems that provide a tool to extend convergence results from reduced to full systems, under appropriate time separation assumptions.


  7. M.A. Al-Radhawi, M. Sadeghi, and E.D. Sontag. Long-term regulation of prolonged epidemic outbreaks in large populations via adaptive control: a singular perturbation approach. IEEE Control Systems Letters, 6:578-583, 2022. [PDF] Keyword(s): epidemiology, COVID-19, COVID, systems biology.
    Abstract:
    In order to control highly-contagious and prolonged outbreaks, public health authorities intervene to institute social distancing, lock-down policies, and other Non-Pharmaceutical Interventions (NPIs). Given the high social, educational, psychological, and economic costs of NPIs, authorities tune them, alternatively tightening up or relaxing rules, with the result that, in effect, a relatively flat infection rate results. For example, during the summer of 2020 in parts of the United States, daily COVID-19 infection numbers dropped to a plateau. This paper approaches NPI tuning as a control-theoretic problem, starting from a simple dynamic model for social distancing based on the classical SIR epidemics model. Using a singular-perturbation approach, the plateau becomes a Quasi-Steady-State (QSS) of a reduced two-dimensional SIR model regulated by adaptive dynamic feedback. It is shown that the QSS can be assigned and it is globally asymptotically stable. Interestingly, the dynamic model for social distancing can be interpreted as a nonlinear integral controller. Problems of data fitting and parameter identifiability are also studied for this model. This letter also discusses how this simple model allows for a meaningful study of the effect of population size, vaccinations, and the emergence of second waves.


  8. M.A. Al-Radhawi, S. Tripathi, Y. Zhang, E.D. Sontag, and H. Levine. Epigenetic factor competition reshapes the EMT landscape. Proc Natl Acad Sci USA, 119:e2210844119, 2022. [WWW] [PDF] Keyword(s): gene networks, Epithelial-Mesenchymal Transition, EMT, epigenetics, systems biology, cancer.
    Abstract:
    The emergence of and transitions between distinct phenotypes in isogenic cells can be attributed to the intricate interplay of epigenetic marks, external signals, and gene regulatory elements. These elements include chromatin remodelers, histone modifiers, transcription factors, and regulatory RNAs. Mathematical models known as Gene Regulatory Networks (GRNs) are an increasingly important tool to unravel the workings of such complex networks. In such models, epigenetic factors are usually proposed to act on the chromatin regions directly involved in the expression of relevant genes. However, it has been well-established that these factors operate globally and compete with each other for targets genome-wide. Therefore, a perturbation of the activity of a regulator can redistribute epigenetic marks across the genome and modulate the levels of competing regulators. In this paper, we propose a conceptual and mathematical modeling framework that incorporates both local and global competition effects between antagonistic epigenetic regulators in addition to local transcription factors, and show the counter-intuitive consequences of such interactions. We apply our approach to recent experimental findings on the Epithelial-Mesenchymal Transition (EMT). We show that it can explain the puzzling experimental data as well provide new verifiable predictions.


  9. D. Angeli, M.A. Al-Radhawi, and E.D. Sontag. A robust Lyapunov criterion for non-oscillatory behaviors in biological interaction networks. IEEE Transactions on Automatic Control, 67(7):3305-3320, 2022. [PDF] [doi:10.1109/TAC.2021.3096807] Keyword(s): oscillations, dynamical systems, enzymatic cycles, systems biology.
    Abstract:
    This paper introduces a notion of non-oscillation, proposes a constructive method for its robust verification, and studies its application to biological interaction networks. The paper starts by revisiting Muldowney's result on non-existence of periodic solutions based on the study of the variational system of the second additive compound of the Jacobian of a nonlinear system. It then shows that exponential stability of the latter rules out limit cycles, quasi-periodic solutions, and broad classes of oscillatory behavior. The focus then turns ton nonlinear equations arising in biological interaction networks with general kinetics, the paper shows that the dynamics of the variational system can be embedded in a linear differential inclusion. This leads to algorithms for constructing piecewise linear Lyapunov functions to certify global robust non-oscillatory behavior. Finally, the paper applies the new techniques to study several regulated enzymatic cycles where available methods are not able to provide any information about their qualitative global behavior.


  10. M.A. Al-Radhawi, M. Margaliot, and E. D. Sontag. Maximizing average throughput in oscillatory biochemical synthesis systems: an optimal control approach. Royal Society Open Science, 8(9):210878, 2021. [PDF]
    Abstract:
    A dynamical system entrains to a periodic input if its state converges globally to an attractor with the same period. In particular, for a constant input, the state converges to a unique equilibrium point for any initial condition. We consider the problem of maximizing a weighted average of the system's output along the periodic attractor. The gain of entrainment is the benefit achieved by using a non-constant periodic input relative to a constant input with the same time average. Such a problem amounts to optimal allocation of resources in a periodic manner. We formulate this problem as a periodic optimal control problem, which can be analyzed by means of the Pontryagin maximum principle or solved numerically via powerful software packages. We then apply our framework to a class of nonlinear occupancy models that appear frequently in biological synthesis systems and other applications. We show that, perhaps surprisingly, constant inputs are optimal for various architectures. This suggests that the presence of non-constant periodic signals, which frequently appear in biological occupancy systems, is a signature of an underlying time-varying objective functional being optimized.


  11. T. Chen, M. A. Al-Radhawi, C.A. Voigt, and E.D. Sontag. A synthetic distributed genetic multi-bit counter. iScience, 24:103526, 2021. [PDF] Keyword(s): counters, synthetic biology, transcriptional networks, gene networks, boolean circuits, boolean gates, systems biology.
    Abstract:
    A design for genetically-encoded counters is proposed via repressor-based circuits. An N-bit counter reads sequences of input pulses and displays the total number of pulses, modulo $2^N$. The design is based on distributed computation, with specialized cell types allocated to specific tasks. This allows scalability and bypasses constraints on the maximal number of circuit genes per cell due to toxicity or failures due to resource limitations. The design starts with a single-bit counter. The N-bit counter is then obtained by interconnecting (using diffusible chemicals) a set of N single-bit counters and connector modules. An optimization framework is used to determine appropriate gate parameters and to compute bounds on admissible pulse widths and relaxation (inter-pulse) times, as well as to guide the construction of novel gates. This work can be viewed as a step toward obtaining circuits that are capable of finite-automaton computation, in analogy to digital central processing units.


  12. H. Hong, J. Kim, M.A. Al-Radhawi, E.D. Sontag, and J. K. Kim. Derivation of stationary distributions of biochemical reaction networks via structure transformation. Communications Biology, 4:620-, 2021. [PDF] Keyword(s): stationary distribution, reaction networks, network translation, reaction networks, chemical master equation, stochastic, probabilistic, systems biology.
    Abstract:
    Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states in deterministic models and stationary distributions in stochastic models. Unlike deterministic steady states, stationary distributions capturing inherent fluctuations of reactions are extremely difficult to derive analytically due to the curse of dimensionality. Here, we develop a method to derive analytic stationary distributions from deterministic steady states by transforming BRNs to have a special dynamic property, called complex balancing. Specifically, we merge nodes and edges of BRNs to match in- and out-flows of each node. This allows us to derive the stationary distributions of a large class of BRNs, including autophosphorylation networks of EGFR, PAK1, and Aurora B kinase and a genetic toggle switch. This reveals the unique properties of their stochastic dynamics such as robustness, sensitivity, and multimodality. Importantly, we provide a user-friendly computational package, CASTANET, that automatically derives symbolic expressions of the stationary distributions of BRNs to understand their long-term stochasticity.


  13. A.P. Tran, M.A. Al-Radhawi, E. Ernst, and E.D. Sontag. Optimization of heuristic logic synthesis by iteratively reducing circuit substructures using a database of optimal implementations. 2021. Note: Submitted. Keyword(s): Heuristic logic minimizer, Boolean circuit reduction, optimal synthesis, logic optimization, synthetic biology.
    Abstract:
    Minimal synthesis of Boolean functions is an NP-hard problem, and heuristic approaches typically give suboptimal circuits. However, in the emergent field of synthetic biology, genetic logic designs that use even a single additional Boolean gate can render a circuit unimplementable in a cell. This has led to a renewed interest in the field of optimal multilevel Boolean synthesis. For small numbers (1-4) of inputs, an exhaustive search is possible, but this is impractical for large circuits. In this work, we demonstrate that even though it is challenging to build a database of optimal implementations for anything larger than 4-input Boolean functions, a database of 4-input optimal implementations can be used to greatly reduce the number of logical gates required in larger heuristic logic synthesis implementations. The proposed algorithm combines the heuristic results with an optimal implementation database and yields average improvements of 5.16% for 5-input circuits and 4.54% for 6-input circuits on outputs provided by the logic synthesis tool extit{ABC}. In addition to the gains in the efficiency of the implemented circuits, this work also attests to the importance and practicality of the field of optimal synthesis, even if it cannot directly provide results for larger circuits. The focus of this work is on circuits made exclusively of 2-input NOR gates but the presented results are readily applicable to 2-input NAND circuits as well as (2-input) AND/NOT circuits. In addition, the framework proposed here is likely to be adaptable to other types of circuits. An implementation of the described algorithm, HLM (Hybrid Logic Minimizer), is available at https://github.com/sontaglab/HLM/.


  14. M.A. Al-Radhawi, D. Angeli, and E.D. Sontag. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks. PLoS Computational Biology, pp 16(2): e1007681, 2020. [PDF] Keyword(s): MAPK cascades, Lyapunov functions, stability, chemical networks, chemical rection networks, systems biology, RFM, ribosome flow model.
    Abstract:
    This paper deals with the analysis of the dynamics of chemical reaction networks, developing a theoretical framework based only on graphical knowledge and applying regardless of the particular form of kinetics. This paper introduces a class of networks that are "structurally (mono) attractive", by which we mean that they are incapable of exhibiting multiple steady states, oscillation, or chaos by the virtue of their reaction graphs. These networks are characterized by the existence of a universal energy-like function which we call a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear systems is introduced, which form the extremals of a linear convex cone. The problem is then reduced to that of finding a common Lyapunov function for this set of extremals. Based on this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction Networks (LEARN), is provided that constructs such functions or rules out their existence. An extensive study of biochemical networks demonstrates that LEARN offers a new unified framework. We study basic motifs, three-body binding, and transcriptional networks. We focus on cellular signalling networks including various post-translational modification cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading, ERK signaling, and the Ribosome Flow Model.


  15. M.A. Al-Radhawi, A.P. Tran, E. Ernst, T. Chen, C.A. Voigt, and E.D. Sontag. Distributed implementation of Boolean functions by transcriptional synthetic circuits. ACS Synthetic Biology, 9:2172-2187, 2020. [PDF] [doi:10.1021/acssynbio.0c00228] Keyword(s): synthetic biology, transcriptional networks, gene networks, boolean circuits, boolean gates, systems biology.
    Abstract:
    Starting in the early 2000s, sophisticated technologies have been developed for the rational construction of synthetic genetic networks that implement specified logical functionalities. Despite impressive progress, however, the scaling necessary in order to achieve greater computational power has been hampered by many constraints, including repressor toxicity and the lack of large sets of mutually-orthogonal repressors. As a consequence, a typical circuit contains no more than roughly seven repressor-based gates per cell. A possible way around this scalability problem is to distribute the computation among multiple cell types, which communicate among themselves using diffusible small molecules (DSMs) and each of which implements a small sub-circuit. Examples of DSMs are those employed by quorum sensing systems in bacteria. This paper focuses on systematic ways to implement this distributed approach, in the context of the evaluation of arbitrary Boolean functions. The unique characteristics of genetic circuits and the properties of DSMs require the development of new Boolean synthesis methods, distinct from those classically used in electronic circuit design. In this work, we propose a fast algorithm to synthesize distributed realizations for any Boolean function, under constraints on the number of gates per cell and the number of orthogonal DSMs. The method is based on an exact synthesis algorithm to find the minimal circuit per cell, which in turn allows us to build an extensive database of Boolean functions up to a given number of inputs. For concreteness, we will specifically focus on circuits of up to 4 inputs, which might represent, for example, two chemical inducers and two light inputs at different frequencies. Our method shows that, with a constraint of no more than seven gates per cell, the use of a single DSM increases the total number of realizable circuits by at least 7.58-fold compared to centralized computation. Moreover, when allowing two DSM's, one can realize 99.995\% of all possible 4-input Boolean functions, still with at most 7 gates per cell. The methodology introduced here can be readily adapted to complement recent genetic circuit design automation software.


  16. T. Chen, M.A. Al-Radhawi, and E.D. Sontag. A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Epigenetics, 15:1-22, 2020. Note: PMID: 32842865. [PDF] [doi:10.1080/15592294.2020.1805686] Keyword(s): methylation, differentiation, epigenetics, pluripotent cells, gene regulatory networks, bistability, bistability, systems biology.
    Abstract:
    Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation, with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The ``Basin of Attraction percentage'' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that methylation plays in enhancing the stability of the silenced gene state.


  17. J. Miller, M.A. Al-Radhawi, and E.D. Sontag. Mediating ribosomal competition by splitting pools. IEEE Control Systems Letters, 5:1555-1560, 2020. [PDF] Keyword(s): systems biology, synthetic biology, ribosomes, RFM, ribosome flow model.
    Abstract:
    Synthetic biology constructs often rely upon the introduction of "circuit" genes into host cells, in order to express novel proteins and thus endow the host with a desired behavior. The expression of these new genes "consumes" existing resources in the cell, such as ATP, RNA polymerase, amino acids, and ribosomes. Ribosomal competition among strands of mRNA may be described by a system of nonlinear ODEs called the Ribosomal Flow Model (RFM). The competition for resources between host and circuit genes can be ameliorated by splitting the ribosome pool by use of orthogonal ribosomes, where the circuit genes are exclusively translated by mutated ribosomes. In this work, the RFM system is extended to include orthogonal ribosome competition. This Orthogonal Ribosomal Flow Model (ORFM) is proven to be stable through the use of Robust Lyapunov Functions. The optimization problem of maximizing the weighted protein translation rate by adjusting allocation of ribosomal species is formulated and implemented. Note: publsihed Nov 2020, even though journal reprint says "Nov 2021".


  18. A.P. Tran, M.A. Al-Radhawi, I. Kareva, J. Wu, D.J. Waxman, and E.D. Sontag. Delicate balances in cancer chemotherapy: Modeling immune recruitment and emergence of systemic drug resistance. Frontiers in Immunology, 11:1376-, 2020. [PDF] [doi:10.3389/fimmu.2020.01376] Keyword(s): metronomic chemotherapy, cyclophosphamide, mathematical modeling, immune recruitment, cancer, resistance, oncology, immunology, systems biology.
    Abstract:
    Metronomic chemotherapy can drastically enhance immunogenic tumor cell death. However, the responsible mechanisms are still incompletely understood. Here, we develop a mathematical model to elucidate the underlying complex interactions between tumor growth, immune system activation, and therapy-mediated immunogenic cell death. Our model is conceptually simple, yet it provides a surprisingly excellent fit to empirical data obtained from a GL261 mouse glioma model treated with cyclophosphamide on a metronomic schedule. The model includes terms representing immune recruitment as well as the emergence of drug resistance during prolonged metronomic treatments. Strikingly, a fixed set of parameters, not adjusted for individuals nor for drug schedule, excellently recapitulates experimental data across various drug regimens, including treatments administered at intervals ranging from 6 to 12 days. Additionally, the model predicts peak immune activation times, rediscovering experimental data that had not been used in parameter fitting or in model construction. The validated model was then used to make predictions about expected tumor-immune dynamics for novel drug administration schedules. Notably, the validated model suggests that immunostimulatory and immunosuppressive intermediates are responsible for the observed phenomena of resistance and immune cell recruitment, and thus for variation of responses with respect to different schedules of drug administration.


  19. M. A. Al-Radhawi, D. Del Vecchio, and E. D. Sontag. Multi-modality in gene regulatory networks with slow gene binding. PLoS Computational Biology, 15:e1006784, 2019. [PDF] Keyword(s): multistability, gene networks, Markov Chains, Master Equation, cancer heterogeneity, phenotypic variation, nonlinear systems, stochastic systems, epigenetics, chemical master equations, systems biology.
    Abstract:
    In biological processes such as embryonic development, hematopoietic cell differentiation, and the arising of tumor heterogeneity and consequent resistance to therapy, mechanisms of gene activation and deactivation may play a role in the emergence of phenotypically heterogeneous yet genetically identical (clonal) cellular populations. Mathematically, the variability in phenotypes in the absence of genetic variation can be modeled through the existence of multiple metastable attractors in nonlinear systems subject with stochastic switching, each one of them associated to an alternative epigenetic state. An important theoretical and practical question is that of estimating the number and location of these states, as well as their relative probabilities of occurrence. This paper focuses on a rigorous analytic characterization of multiple modes under slow promoter kinetics, which is a feature of epigenetic regulation. It characterizes the stationary distributions of Chemical Master Equations for gene regulatory networks as a mixture of Poisson distributions. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations and a trans-differentiation network.


  20. M. Sadeghi, M.A. Al-Radhawi, M. Margaliot, and E.D. Sontag. No switching policy is optimal for a positive linear system with a bottleneck entrance. IEEE Control Systems Letters, 3:889-894, 2019. Note: (Also in Proc. 2019 IEEE Conf. Decision and Control.). [PDF] Keyword(s): entrainment, switched systems, RFM, ribosome flow model, traffic systems, nonlinear systems, nonlinear control.
    Abstract:
    We consider a nonlinear SISO system that is a cascade of a scalar "bottleneck entrance" with a stable positive linear system. In response to any periodic inflow, all solutions converge to a unique periodic solution with the same period. We study the problem of maximizing the averaged throughput via controlled switching. We compare two strategies: 1) switching between a high and low value, and 2 ~using a constant inflow equal to the prescribed mean value. We show that no possible switching policy can outperform a constant inflow rate, though it can approach it asymptotically. We describe several potential applications of this problem in traffic systems, ribosome flow models, and scheduling at security checks.


Conference articles
  1. M. Ali Al-Radhawi, K. Manoj, D. Jatkar, A. Duvall, D. Del Vecchio, and E.D. Sontag. Competition for binding targets results in paradoxical effects for simultaneous activator and repressor action. In Proc. 63rd IEEE Conference on Decision and Control (CDC), 2024. Note: To appear. Preprint in arXiv.[PDF] Keyword(s): resource competition, epigenetics, systems biology, synthetic biology, gene regulatory systems.
    Abstract:
    In the context of epigenetic transformations in cancer metastasis, a puzzling effect was recently discovered, in which the elimination (knock-out) of an activating regulatory element leads to increased (rather than decreased) activity of the element being regulated. It has been postulated that this paradoxical behavior can be explained by activating and repressing transcription factors competing for binding to other possible targets. It is very difficult to prove this hypothesis in mammalian cells, due to the large number of potential players and the complexity of endogenous intracellular regulatory networks. Instead, this paper analyzes this issue through an analogous synthetic biology construct which aims to reproduce the paradoxical behavior using standard bacterial gene expression networks. The paper first reviews the motivating cancer biology work, and then describes a proposed synthetic construct. A mathematical model is formulated, and basic properties of uniqueness of steady states and convergence to equilibria are established, as well as an identification of parameter regimes which should lead to observing such paradoxical phenomena (more activator leads to less activity at steady state). A proof is also given to show that this is a steady-state property, and for initial transients the phenomenon will not be observed. This work adds to the general line of work of resource competition in synthetic circuits.


  2. J. Miller, M.A. Al-Radhawi, and E.D. Sontag. Mediating ribosomal competition by splitting pools. In Proc. 2021 Automatic Control Conference, pages 1897-1902, 2021. [PDF] Keyword(s): systems biology, synthetic biology, ribosomes, RFM, ribosome flow model.
    Abstract:
    Conference version of paper published in IEEE Control Systems Letters, 2020


  3. D. K. Agrawal, R. Marshall, M.A. Al-Radhawi, V. Noireaux, and E. D. Sontag. Some remarks on robust gene regulation in a biomolecular integral controller. In Proc. 2019 IEEE Conf. Decision and Control, pages 2820-2825, 2019. [PDF] Keyword(s): adaptation, biological adaptation, perfect adaptation, tracking, synthetic biology, integral feedback, TX/TL, systems biology, dynamical systems, adaptation, internal model principle, systems biology.
    Abstract:
    Integral feedback can help achieve robust tracking independently of external disturbances. Motivated by this knowledge, biological engineers have proposed various designs of biomolecular integral feedback controllers to regulate biological processes. In this paper, we theoretically analyze the operation of a particular synthetic biomolecular integral controller, which we have recently proposed and implemented experimentally. Using a combination of methods, ranging from linearized analysis to sum-of-squares (SOS) Lyapunov functions, we demonstrate that, when the controller is operated in closed-loop, it is capable of providing integral corrections to the concentration of an output species in such a manner that the output tracks a reference signal linearly over a large dynamic range. We investigate the output dependency on the reaction parameters through sensitivity analysis, and quantify performance using control theory metrics to characterize response properties, thus providing clear selection guidelines for practical applications. We then demonstrate the stable operation of the closed-loop control system by constructing quartic Lyapunov functions using SOS optimization techniques, and establish global stability for a unique equilibrium. Our analysis suggests that by incorporating effective molecular sequestration, a biomolecular closed-loop integral controller that is capable of robustly regulating gene expression is feasible.


  4. S. Bruno, M.A. Al-Radhawi, E.D. Sontag, and D. Del Vecchio. Stochastic analysis of genetic feedback controllers to reprogram a pluripotency gene regulatory network. In Proc. 2019 Automatic Control Conference, pages 5089-5096, 2019. [PDF] Keyword(s): multistability, reaction networks, systems biology, stochastic systems, cell differentiation, multistationarity, chemical master equations.
    Abstract:
    Cellular reprogramming is traditionally accomplished through an open loop control approach, wherein key transcription factors are injected in cells to steer a gene regulatory network toward a pluripotent state. Recently, a closed loop feedback control strategy was proposed in order to achieve more accurate control. Previous analyses of the controller were based on deterministic models, ignoring the substantial stochasticity in these networks, Here we analyze the Chemical Master Equation for reaction models with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when analyzed using a stochastic model.


  5. M.A. Al-Radhawi, N.S. Kumar, E.D. Sontag, and D. Del Vecchio. Stochastic multistationarity in a model of the hematopoietic stem cell differentiation network. In Proc. 2018 IEEE Conf. Decision and Control, pages 1886-1892, 2018. [PDF] Keyword(s): multistability, reaction networks, systems biology, stochastic systems, cell differentiation, multistationarity, chemical master equations.
    Abstract:
    In the mathematical modeling of cell differentiation, it is common to think of internal states of cells (quanfitied by activation levels of certain genes) as determining different cell types. We study here the "PU.1/GATA-1 circuit" that controls the development of mature blood cells from hematopoietic stem cells (HSCs). We introduce a rigorous chemical reaction network model of the PU.1/GATA-1 circuit, which incorporates current biological knowledge and find that the resulting ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting the fact that differentiation networks have, by definition, alternative stable steady states. When considering instead the stochastic version of this chemical network, we analytically construct the stationary distribution, and are able to show that this distribution is indeed capable of admitting a multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to bias the probabilities towards different stationary states. We remark that certain changes in system parameters can be physically implemented by a biological feedback mechanism; tuning this feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell types over others.


Internal reports
  1. T. Chen, M. A. Al-Radhawi, and E. D. Sontag. A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Technical report, Cold Spring Harbor Laboratory, 2019. Note: BioRxiv preprint 10.1101/2019.12.19.883280. Keyword(s): Cell-fate networks, gene regulatory networks, DNA methylation, epigenetic regulation, pluripotent stem cell circuit.
    Abstract:
    Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation, with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The ``Basin of Attraction percentage'' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that methylation plays in enhancing the stability of the silenced gene state.


  2. A. P. Tran, M. A. Al-Radhawi, I. Kareva, J. Wu, D. J. Waxman, and E. D. Sontag. Delicate balances in cancer chemotherapy: modeling immune recruitment and emergence of systemic drug resistance. Technical report, Cold Spring Harbor Laboratory, 2019. Note: BioRxiv 2019.12.12.874891. Keyword(s): chemotherapy, immunology, immune system, oncology, cancer, metronomic.
    Abstract:
    Metronomic chemotherapy can drastically enhance immunogenic tumor cell death. However, the responsible mechanisms are still incompletely understood. Here, we develop a mathematical model to elucidate the underlying complex interactions between tumor growth, immune system activation, and therapy-mediated immunogenic cell death. Our model is conceptually simple, yet it provides a surprisingly excellent fit to empirical data obtained from a GL261 mouse glioma model treated with cyclophosphamide on a metronomic schedule. The model includes terms representing immune recruitment as well as the emergence of drug resistance during prolonged metronomic treatments. Strikingly, a fixed set of parameters, not adjusted for individuals nor for drug schedule, excellently recapitulates experimental data across various drug regimens, including treatments administered at intervals ranging from 6 to 12 days. Additionally, the model predicts peak immune activation times, rediscovering experimental data that had not been used in parameter fitting or in model construction. The validated model was then used to make predictions about expected tumor-immune dynamics for novel drug administration schedules. Notably, the validated model suggests that immunostimulatory and immunosuppressive intermediates are responsible for the observed phenomena of resistance and immune cell recruitment, and thus for variation of responses with respect to different schedules of drug administration.


  3. M. Sadeghi, M.A. Al-Radhawi, M. Margaliot, and E.D. Sontag. On the periodic gain of the Ribosome Flow Model. Technical report, bioRxiv 2018/507988, 2018. [PDF] Keyword(s): systems biology, reaction networks, ribosomes, RFM, ribosome flow model.
    Abstract:
    We consider a compartmental model for ribosome flow during RNA translation, the Ribosome Flow Model (RFM). This model includes a set of positive transition rates that control the flow from every site to the consecutive site. It has been shown that when these rates are time-varying and jointly T-periodic, the protein production rate converges to a unique T-periodic pattern. Here, we study a problem that can be roughly stated as: can periodic rates yield a higher average production rate than constant rates? We rigorously formulate this question and show via simulations, and rigorous analysis in one simple case, that the answer is no.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html