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A Robust Lyapunov Criterion for Nonoscillatory
Behaviors in Biological Interaction Networks

David Angeli , Muhammad Ali Al-Radhawi , and Eduardo D. Sontag

Abstract— We introduce the notion of nonoscillation,
propose a constructive method for its robust verification,
and study its application to biological interaction networks
(also known as, chemical reaction networks). We begin
by revisiting Muldowney’s result on the nonexistence of
periodic solutions based on the study of the variational
system of the second additive compound of the Jacobian
of a nonlinear system. We show that exponential stability
of the latter rules out limit cycles, quasi-periodic solutions,
and broad classes of oscillatory behavior. We focus then
on nonlinear equations arising in biological interaction net-
works with general kinetics, and we show that the dynamics
of the aforementioned variational system can be embed-
ded in a linear differential inclusion. We then propose al-
gorithms for constructing piecewise linear Lyapunov func-
tions to certify global robust nonoscillatory behavior. Fi-
nally, we apply our techniques to study several regulated
enzymatic cycles, where available methods are not able
to provide any information about their qualitative global
behavior.

Index Terms—Biological interaction networks (BINs), en-
zymatic cycles, piecewise linear (PWL) Lyapunov functions,
robust nonoscillation, second additive compounds.

I. INTRODUCTION

NATURAL and engineered nonlinear systems are com-
monly required to operate consistently and robustly under
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perturbations and a variety of environmental conditions. Ra-
tional analysis and synthesis of such systems need qualitative
characterizations of their global long-term behavior, which is a
notoriously difficult task for general nonlinear systems. This
problem is compounded by the large uncertainties that per-
vade the mathematical descriptions of many such systems. A
prominent class exemplifying these difficulties are biological
interaction networks (BINs), which include molecular processes
such as expression and decay of proteins, metabolic networks,
regulation of transcription and translation, and signal transduc-
tion [1]. Such networks are usually described via the mathe-
matical formalism of BINs [also known as chemical reaction
networks (CRNs)] [2]. Ordinary differential equations (ODE)
descriptions of BINs have two components, one graphical and
one kinetic. The first is often well characterized as it corre-
sponds to the list of reactions, while the latter (which includes
kinetic constants and the functional forms of kinetics) is not,
as it depends on quantifying the “speed” of reactions which
is difficult to measure and subject to environmental changes.
This information disparity precludes the construction of full
mathematical models, and hence a pressing need has emerged for
the development of general robust techniques that can provide
conclusions on the qualitative behavior of the network based on
the graphical information only [3].

Although this problem may seem intractable, significant
progress has been made in the past few decades. A pioneering
example has been in the development of the theory of complex-
balanced networks with mass-action kinetics, and the associated
deficiency-based characterizations [4], [5]. It has been shown
that such networks always admit Lyapunov functions over the
positive orthant, and that global stability can be ascertained
in some cases [6], [7]. Other notions of global behavior have
also been considered in the literature. It has been shown that
the persistence of a class of BINs can be certified via simple
graphical conditions [8]. The monotonicity of certain BINs can
be established in reaction coordinates, and this property has
been used to show global convergence to attractors [9]. More
recently, new techniques have been developed for certifying
global stability by the construction of robust Lyapunov functions
(RLFs) in reaction coordinates [10]–[12] and concentration
coordinates [12]–[15]. These techniques have been developed
into a comprehensive framework with relatively wide applica-
bility to various key biochemical networks like transcriptional
networks, posttranslational modification (PTM) cascades, signal
transduction, etc [12].

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on June 13,2024 at 09:27:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-5311-4306
https://orcid.org/0000-0002-6761-4520
https://orcid.org/0000-0001-8020-5783
mailto:david.angeli@unifi.it
mailto:malirdwi@northeastern.edu
mailto:e.sontag@northeastern.edu
https://doi.org/10.1109/TAC.2021.3096807


3306 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 7, JULY 2022

Despite recent advances, many relevant networks and many
dynamic behaviors, remain outside the scope of analysis through
available methods. In this article, we study oscillations in
dynamical systems with particular emphasis on BINs. Unlike
earlier works which studied conditions for the emergence of
oscillations in various physical contexts [16], [17], we pro-
pose to study another global qualitative notion, which we call
nonoscillation, by examining the variational system of the sec-
ond additive compound of the Jacobian of a nonlinear system.
This approach was originally introduced in order to rule out
periodic solutions by Muldowney [18] (see also [19], where
the approach has recently been reframed in the context of
k-order contraction theory), and it has been applied to the
study of epidemic models [20], circadian rhythms [21], and,
most remarkably, as a local analysis tool, [22], to rule out
Hopf bifurcations in BINs. We begin by revisiting Muldowney’s
results. We will show that exponential stability of the aforemen-
tioned variational system guarantees that the area measure of
all bidimensional compact surfaces asymptotically converges to
zero. It turns out, as a consequence, that the same will be true
of the kth-hypervolume measure for arbitrary k-dimensional
submanifolds for any k ≥ 2. This allows us to exclude limit
cycles, invariant torii, (asymptotically) quasi-periodic solutions,
and many types of oscillatory behavior. We then show that this
notion can be verified successfully for classes of BINs, where no
other technique has proved useful. We will achieve this goal by
embedding the dynamics of the second additive compounds of a
BIN in a linear differential inclusion (LDI), and then generalize
the RLF approach to be applied to this LDI. We will show that the
existence of such an RLF will guarantee robust nonoscillation
by establishing a LaSalle-like condition.

Although robust nonoscillation is technically weaker than
global stability, coupling it with local asymptotic stability is
nearly as good as it places robust and strong constraints on the
range of possible behaviors of a given network. Furthermore,
this new notion is also compatible with multistability and almost
global stability [23], [24], which opens the door for applications
to systems with multiple attractors.

A. Motivating Example: Regulation of the Enzymatic
Cycle

We describe an open problem which is highly relevant to
systems biology. It involves regulation mechanisms of the PTM
cycle which is a very common motif in signal transduction [26].
For example, an enzyme known as a kinase (K) binds to a
substrate (S) to form an intermediate complex (C). Then, the
substrate is phosphorylated to produce an activated substrate
(P ). The activated substrate decays back to its inactive form
(S). The network is depicted inside the dashed rectangle in
Fig. 1(a)–(c), and it can be written as follows:

S +K � C −→ P +K, P −→ S. (1)

The dynamics of the above network has been analyzed using
a piecewise linear (PWL) RLF. In particular, it has been shown
that it always admits a positive globally asymptotic stable steady
state, for any choice of monotone kinetics [11], [12].

Fig. 1. Various architectures for regulating the PTM cycle. (a) Kinase is
only activated if a ligand binds to a receptor. (b) Kinase gets deactivated
after binding to an inhibitor. (c) Substrate-kinase intermediate complex
gets sequestered by an inhibitor. The Petri-net [25] notation is used
where a circle denotes a species, and a rectangle denotes a reaction.

However, small structural changes in the network can make
a PWL RLF fail to exist. We study various ways of regulating
the activity of the cycle as depicted in Fig. 1. In one scenario,
the kinase can only be activated if two molecules bind [e.g., a
ligand (L) and a receptor (Rc)] as shown in Fig. 1(a). This is
modeled by adding the reaction

Rc+ L� K (2)

to the BIN (1). It can be shown that this network has a unique
positive steady-steady state for each assignment of nonzero
total substrate, ligand, and receptor concentrations [27], [28].
However, a PWL RLF fails to exist [12], [29]. It has been shown
recently that this network enjoys local asymptotic stability for
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any choice of kinetics, i.e., the Jacobian matrix is always Hurwitz
at any steady state [30]. However, there are no known robust
global guarantees on the asymptotic behavior. Other regulation
mechanisms exist [28]. For instance, the kinase might be in-
activated by binding to an inhibitor (I) such as a drug used in
targeted cancer therapies [31]. This is represented by adding the
reaction K + I � EI to the network (1) as shown in Fig. 1(b).
A third possible architecture has the intermediate complex (C)
sequestered by I . Hence, the reaction C + I � CI is added
to (1). None of these networks can be globally analyzed using
current techniques. We will be studying these networks under our
new framework and show that they are globally nonoscillatory.

It is worth mentioning that not all regulation mechanisms of
the PTM are beyond current methods of analysis. For instance,
instead of a simple decay of P to S, another enzyme called a
phosphatase can be used to accelerate the dephosphorylation of
P back to S. This latter architecture is well studied [9], and its
global stability can be certified by a PWL RLF [12].

This article is organized as follows. Mathematical defini-
tions and notations are given in Section II. Section III re-
visits Muldowney’s results in terms of exponential stability.
Section IV provides a robust Lyapunov criterion for robust
nonoscillation when the dynamics can be embedded in a LDI.
Section V studies the application of the results to BINs. Section
VI provides algorithms for constructing the PWL RLF. Section
VII studies several examples of enzymatic cycles that have not
been amenable to methods in the literature. Finally, Section VII
concludes this article.

II. NONOSCILLATORY SYSTEMS

A. Definitions and Notation

Our basic concepts and results are not restricted to BINs,
but apply to more general classes of nonlinear systems. For a
dynamical system

ẋ(t) = f(x(t)) (3)

with the state x : R≥0 → Rn and f : X ⊂ Rn → Rn of class
C1, we denote by ϕ(t, x0) the solution at time t from initial
condition x0 at time 0. Moreover, ω(x0) denotes the ω-limit set
of such a solution. The set X can be arbitrary, but we assume
that it is forward invariant for the dynamics, that is, ϕ(t, x0) ∈
X for all t ≥ 0 and all x0 ∈ X . Class C1 means that f is the
restriction of a C1 function defined on some open neighborhood
of X . We let D := {z ∈ R2 : z21 + z22 ≤ 1} ⊂ R2 denote the
unit disk, S := {[cos(θ), sin(θ)], θ ∈ [0, 2π]} the unit circle, and
Sk the k-dimensional torus.

Definition 1: We say that (3) exhibits oscillatory behavior if,
for some integer k ≥ 1, it admits a compact invariant set Ω ⊂ X
which is the image of a C1 injectionh : Sk → X not everywhere
singular. If it does not admit such a set then we say that (3) is
nonoscillatory.

Notice that Definition 1 includes systems with many kinds
of nonconverging behavior, in particular, systems with peri-
odic solutions, or asymptotically periodic solutions. In this
case ω(x0) is invariant and diffeomorphic to S. Furthermore,
it includes systems with multiple incommensurable oscillation

frequencies, (such as quasi-periodic solutions, or asymptotically
quasi-periodic solutions). In such a case ω(x0) is the image of
Sk, for some k > 1 and some map h. It also includes other
types of nonconvergent behaviors, such as solutions approaching
a closed curve of equilibria, and certain types of homoclinic
and heteroclinic orbits (of finite length). Moreover, it also en-
compasses certain types of chaotic systems as the associated
attractors are sometimes known to embed unstable periodic
solutions [32].

While the gap between nonconvergent and oscillatory be-
havior seems to be extremely small in practice, ruling out its
existence appears to be very challenging, given the existing
technical tools.

We introduce some of the required background on com-
pound matrices and their role in assessing the evolution of
k-hypervolumes along solutions of a dynamical system. For an
arbitrary C1 injection h : D → X ⊂ Rn, the area of h(D) can
be computed as

μ2(h(D)) :=

∫
D

√√√√ ∑
I⊂{1,...,n}:|I|=2

[
det

(
∂hI
∂z

(z)

)]2
dz1dz2

(4)
where, for a set I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . n} with ele-
ments ordered according to i1 < i2 < . . . < i|I|, and a vector
h, hI denotes the subvector [hi1 , hi2 , . . . , hi|I| ]

′. Similarly, for
any given C1 injective map h : Sk → Rn, and k ≥ 1, the k-
hypervolume of h(Sk) can be obtained according to

μk(h(S
k))

:=

∫
Sk

√√√√ ∑
I⊂{1,...,n}:|I|=k

[
det

(
∂hI
∂θ

(θ)

)]2
dθ1dθ2 . . . dθk.

(5)

These quantities can further be defined along solutions of
(3); in particular, we aim at quantifying μ2(ϕ(t, h(D))) and
μk(ϕ(t, h(Sk))). To this end, we associate to system (3) the
family of variational equations

ẋ = f(x)

δ̇(k)(t) =
∂f

∂x

(k)

(x(t)) δ(k)(t)
(6)

where δ(k) is a vector in R(nk) and, for any A ∈ Rn×n, A(k) ∈
R(nk)×(nk) denotes the kth additive compound matrices for k =
1 . . . n, which are defined element-wise as follows [18]:

A
(k)
IJ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ai1i1 + · · ·+Aikik , if I = J
(−1)�+sAisj� , if exactly one entry is of I

does not occur in J
and j� does not occur in I

0, if I differs from J in two
or more entries

(7)
where I, J ⊂ {1, .., n} are of cardinality k, respectively, de-
noted as I = {i1, i2, . . . , ik}, J = {j1, j2, . . . , jk} with entries
indexed, such that 1 ≤ i1 < i2 < . . . < ik ≤ n and 1 ≤ j1 <
j2 < . . . < jk ≤ n.
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To exemplify this construction, consider the case k = 2,
which will later be our main object of study, and the4× 4matrix,
A = [aij ]. The corresponding 6× 6 additive compound matrix
A(2) is displayed in eq. (7a).

Fix any subset J ⊂ {1, 2, . . . , n} of cardinality k. It is
known [18] that, by arranging minors of ∂ϕ/∂xJ for all subsets
I ⊂ {1, 2, . . . , n} of cardinality k in lexicographic order within
the vector δ(k)(t) as follows:

δ(k)(t) :=

⎡
⎢⎢⎢⎣

...

det
(

∂ϕI

∂xJ
(t, x)

)
...

⎤
⎥⎥⎥⎦ (8)

the resulting vector δ(k)(t) fulfills the kth variational equation
(6) with initial condition x(0) = x and

δ(k)(0) =

⎡
⎢⎢⎣

...
δI,J

...

⎤
⎥⎥⎦

where δI,J := 1, if J = I and 0 otherwise. These properties
will be exploited in subsequent sections to quantify how the
hypervolumes previously defined evolve along solutions of the
considered system of differential equations.

B. Muldowney’s Result Revisited

Our main goal for this section is to obtain an analog to
Muldowney’s result [18] by making use of the notion of uniform
exponential stability. His seminal article shows that if the loga-
rithmic norm of the second-additive compound of the Jacobian
matrix is negative throughout state space for a nonlinear system,
(nontrivial) periodic solutions cannot exist. We formulate the
result by using the notion of uniform exponential stability of
the associated second-additive compound variational equation,
so that we can verify assumptions and certify properties through
the construction of suitable Lyapunov functions for an associated
LDI. Moreover, we strengthen the original result by generalizing
its applicability to invariant submanifolds of any dimension. We
start with the following Lemma about time varying-matrices.

Lemma 1: LetΛ(t) : R≥0 → Rn×n be a time-varying matrix.
If all minors of order k of Λ(t) converge to 0 so do all minors
of order q ≥ k. Furthermore, if the assumed convergence is

exponential, then so is the convergence of all minors of order
q ≥ k.

Proof: We prove the result by induction, by showing that if the
convergence happens for k, then it is also fulfilled for q = k + 1.

Recall that for an invertible square matrix A of dimension
q, it holds that A adj(A) = det(A)Iq , where adj(A) denotes the
adjoint matrix ofA. Hence, taking determinants in both sides of
this previous equality we get

det(A) · det(adj(A)) = det(A adj(A))

= det(det(A)Iq) = det(A)q.

In particular then, det(adj(A)) = det(A)q−1. Taking absolute
values and inverting this relationship yields

|det(A)| = ψ(adj(A)) (9)

where ψ : Rn×n → R≥0 is continuous and given as ψ(B) =
q−1
√|det(B)|. Note that ψ(0) = 0. More generally, if A is sin-

gular, then det(A) = 0 means also that the inequality trivially
holds

|det(A)| ≤ ψ(adj(A)). (10)

We will apply this observation to the matricesA = [Λ]IJ for any
choice of I, J ⊂ {1, 2, . . . , n} of cardinality q. By the induction
hypothesis for any Ĩ , J̃ of cardinality k it holds

lim
t→+∞ det ([Λ]ĨJ̃ (t)) = 0.

Hence, the same is true of each of the entry of the adjoint matrix
(which by definition are minors of dimension q − 1 = k possibly
multiplied by −1)

lim
t→+∞ adj ([Λ]IJ (t)) = 0.

In particular, then, our convergence claim follows from (10) and
continuity of ψ and the fact that ψ(0) = 0.

In order to prove exponential convergence, assume that for
some M and λ > 0, the following is true:

det ([Λ]ĨJ̃ (t)) ≤Me−λt ∀ t ≥ 0

for all Ĩ , J̃ of cardinality k. We see that for all I , J of cardinality
k + 1, and all i, j in {1, . . . , k + 1}, it holds that∣∣∣adj ([ΛIJ ](t))i,j

∣∣∣ ≤Me−λt ∀ t ≥ 0.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 + a22 a23 a24 −a13 −a14 0

a32 a11 + a33 a34 a12 0 −a14

a42 a43 a11 + a44 0 a12 a13

−a31 a21 0 a22 + a33 a34 −a24

−a41 0 a21 a43 a22 + a44 a23

0 −a41 a31 −a42 a32 a33 + a44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7a)
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Hence, substituting the above entry-wise upperbound in (10)
yields

|det ([ΛIJ ](t)) | ≤ ψ (adj ([ΛIJ ](t)))

≤ k

√
(k + 1)!Mk+1e−(k+1)λt = M̃e−

k+1
k λt

for a suitable choice of M̃ . This completes the proof of the
induction step in the case of exponential convergence.

The following corollary follows.
Corollary 1: Assume that for some initial conditionx(0) = x

and some k ∈ {1, 2, . . . n}, the solutions of (6) with arbitrary

initial conditions δ(k)(0) ∈ R(nk) fulfil

lim
t→+∞ δ

(k)(t) = 0.

Then, the same is true for all solutions δ(q)(t) of (6) for q in
{k, k + 1, . . . , n}. Moreover, if the assumed convergence to 0
is exponential (and uniform), so is it for δ(q)(t).

Proof: The result follows from the previous Lemma be-
cause of the connection between solutions of (6) and minors
of ∂ϕ

∂x (t, x) for any given initial condition x0. Hence, the
claim is equivalent to showing that if all minors of order k of
Λ(t) := ∂ϕ

∂x (t, x) converge (exponentially) to 0 so do all minors
of order k + 1. The latter statement immediately follows from
the previous Lemma.

Our main Theorem for general systems is as follows.
Theorem 1: Consider a dynamical system as in (3)

ẋ(t) = f(x(t)) (11)

and assume that, for some convex set K and all x0 ∈ K ⊂ X ,
the second variational equation

˙δ(2)(t) =
∂f

∂x

(2)

(x(t)) δ(2)(t) (12)

is uniformly exponentially stable, i.e., there existM, λ > 0, such
that, for all t ≥ 0 and all δ(2)(0)

|δ(2)(t)| ≤Me−λt |δ(2)(0)| (13)

with M and λ independent of x(0) and δ(2)(0). Then, the
dynamical system (3) is nonoscillatory.

Proof: The statement can be proved by contradiction. We start
for the sake of simplicity, from the case k = 2. Assume h be
a C1 function h : S2 → K, not everywhere singular, such that
h(S2) ⊂ K is invariant. Of course, since ϕ(t, h(S2)) = h(S2)
by definition of invariant set

μ2(ϕ(t, h(S
2))) = μ2(h(S

2)) > 0 (14)

where the last inequality follows by the implicit function theo-
rem given that h is not everywhere singular. On the other hand

μ2(ϕ(t, h(S
2))) =

∫
S2

√√√√ ∑
I⊂{1,...,n}:|I|=2

[
det

(
∂

∂θ
ϕI(t, h(θ))

)]2
dθ1dθ2. (15)

Moreover, by the chain rule

∂

∂θ
ϕI(t, h(θ)) =

∂

∂x
ϕI(t, h(θ))

∂h

∂θ

and therefore by the Cauchy–Binet formula

det

(
∂

∂θ
ϕI(t, h(θ))

)

=
∑

J⊂1,...,n:|J |=2

det

(
∂

∂xJ
ϕI(t, h(θ))

)
det

(
∂hJ
∂θ

)

=
∑

J⊂1,...,n:|J |=2

δ
(2)
I (t, [h(θ), eJ ]) · det

(
∂hJ
∂θ

)

where δ(2)(t, [x0, δ
(2)
0 ]) denotes the δ(2)-component of the so-

lution of (12) from initial conditions x(0) = x0 and δ(2)(0) =
δ
(2)
0 . We may therefore seek to bound from above the integrand

(15) using

det

(
∂

∂θ
ϕI(t, h(θ))

)2

≤ ζn
∑

J⊂1,...,n:|J |=2

[
δ
(2)
I (t, [h(θ), eJ ])

]2
· det

(
∂hJ
∂θ

)2

,

where ζn :=
(
n
2

)
. Taking sums over I we get

∑
I⊂{1,...,n}:|I|=2

[
det

(
∂

∂θ
ϕI(t, h(θ))

)]2

≤ ζn
∑

I,J⊂1,...,n:|I|,|J |=2

[
δ
(2)
I (t, [h(θ), eJ ])

]2
·
[

det

(
∂hJ
∂θ

)]2

= ζn
∑

J⊂1,...,n:|J |=2

∣∣∣δ(2)(t, [h(θ), eJ ])∣∣∣2 · [det

(
∂hJ
∂θ

)]2
.

Moreover, by exponential uniform stability of (12) we see that

μ2(ϕ(t, h(S
2)))

≤
∫

S2

√√√√ζn
∑

J⊂1,...,n:|J |=2

M2e−2λt · det

(
∂hJ
∂θ

)2

dθ1dθ2

=
√
ζnMe−λtμ2(h(S

2)).

The latter inequality, however, contradicts (14) for all t suffi-
ciently large. An analogous proof applies to any invariant set
which is the image of an injection h of Sk for k > 2, thanks to
Corollary 1. Notice that convexity of K was not crucial so far
in the proof.

We consider next the case k = 1. Let h : S → K be a class
C1 map, such that h(S) is invariant. Pick any point x̃ ∈ K. We
consider the map h̃ : D → K defined as h̃(z) := (1− |z|)x̃+
|z|h(z/|z|) (this is a convex combination of x̃ and points of
h(S) and it therefore belongs to K by convexity of the set). By
construction h̃ defines a surface (not necessarily smooth every-
where), such that h̃(∂D) = h(S). Notice that, by invariance of
h(S) this is also true of the map ϕ(t, h̃(·)), i.e., ϕ(t, h̃(∂D)) =
h(S). Our goal is to estimate the area of ϕ(t, h̃(D)). This can
be computed according to
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μ2(ϕ(t, h̃(D)))

=

∫
D

√√√√ ∑
I⊂{1,...,n}:|I|=2

[
det

(
∂

∂z
ϕI(t, h̃(z))

)]2
dz1dz2.

(16)

Following the same steps as in the previous proof we see that:

μ2(ϕ(t, h̃(D))) ≤
√
ζnMe−λtμ2(h̃(D)). (17)

However, by [33], there exists a surface of minimal area which is
bounded by a given contour. This surface may, in general, present
self-intersections depending on how complex is the contour (for
instance due to the presence of knots). Moreover, the surface
of minimal area has positive measure μ > 0, [18], [33]. This,
however, contradicts (17) for all sufficiently large t > 0. This
concludes the proof of the Theorem.

Remark 1: We point out that replacing second additive com-
pound matrices in (12) with the standard Jacobians, that is
the case of k = 1 instead of k = 2, yields classical variational
criteria for exponential incremental stability. Theorem 1 hence
relaxes such assumptions since, by virtue of Corollary 1, ex-
ponential convergence for k = 1 (as needed in incremental
stability) implies exponential convergence for all higher values
of k. The converse is obviously not true.

It is worth pointing out that condition (13), in combination
with the other assumptions of Theorem 1, is only a sufficient
condition for ruling out oscillatory behaviors. In the case of
constant matrices the second additive compound is asymptot-
ically stable iff the real part of the sum of the dominant and
subdominant eigenvalues is negative. This affords existence of
an unstable eigenvalue, provided the subdominant one is suffi-
ciently within the left-hand side of the complex plane. Likewise,
in a time-varying context, one can expect exponential stability
as in (13) provided the dominant and subdominant Lyapunov
exponents have negative sum.

Remark 2: Notice that our conditions are also indepen-
dent of so called dual Lyapunov functions, as introduced by
Rantzer, [34]. Specifically Rantzer makes use of the derivative of
n-forms along the flow in order to impose an expansion condition
on the volume everywhere away from the equilibrium of inter-
est. This implies almost global convergence to the equilibrium
under suitable integrability conditions on the considered density
functions.

III. ROBUST LYAPUNOV CRITERION FOR PERSISTENTLY

EXCITED DIFFERENTIAL INCLUSIONS

In our subsequent treatment of BINs, we are interested in
studying notions of robust nonoscillation. We interpret “robust-
ness” in the control theory sense of structured uncertainties.
Hence, we study a class of uncertain dynamical systems. Given
the dynamical system (12), we want to study the case in which the
dynamics of δ(2)(t) can be embedded in a LDI. For simplicity,
we denote z(t) := δ(2)(t).

A. Common Lyapunov Functions for LDIs

Similar to our previous works [12], [13], we seek to find a con-
vex PWL Lyapunov function V : RN → R≥0 of the following
form:

V (z) = max
k∈{1,...,L}

cTk z (18)

for some vectors c1, . . . , cL ∈ RN , where N :=
(
n
2

)
to be eval-

uated for z(t) = δ(2)(t) as defined in (6).
We state the following definition.
Definition 2: Let the matrices A1, .., As ∈ RN×N , and a

locally Lipschitz function V : RN → R≥0 be given. For each
ε ≥ 0 let Aε denote the set

Aε =

{
s∑

�=1

α�A� : α� ≥ ε, � = 1 . . . s

}
. (19)

Then, we say that V is a common nonstrict Lyapunov function
for the LDI

ż(t) ∈ Aεz(t) (20)

if V (z) is positive definite, (that is V (z) > 0 for all z 
= 0)
and it satisfies ∇V (z)Az ≤ 0 whenever ∇V (z) exists and for
all A ∈ Aε.

Remark 3: We show in Lemma 9 in the Appendix that the
conditions given in Definition 2 are necessary and sufficient for
the time-derivative of V (defined as the upper Dini’s derivative)
to be nonpositive when evaluated over an arbitrary trajectory of
the LDI. The details are given in the Appendix.

The following characterization is standard, but we include a
proof in the Appendix to make the discussion self-contained.

Lemma 2: Let the matricesA1, .., As, and a locally Lipschitz
function V : RN → R≥0 be given. Then, V is a common Lya-
punov function for the LDI (20) if V is positive definite and

V (eAtz) ≤ V (z), ∀ z, ∀ t ≥ 0, ∀A ∈ Aε. (21)

B. Asymptotic Stability and LaSalle’s Argument

Notice that the individual subsystems only need to fulfill the
nonstrict inequality (21) which implies Lyapunov stability, and
not asymptotic stability. In order to prove uniform exponential
stability of a differential inclusion on the basis of existence of a
nonstrict Lyapunov function, we need a LaSalle-like criterion in
conjunction with some notion of persistence of excitation. For
this purpose, we will prove asymptotic stability of the differential
inclusion (20) for every ε > 0. We refer to (20) as a persistently-
excited LDI (PELDI). Notice that

Aε � A0 = cone {A1, A2, . . . , As} ,
where “cone” denotes conic hull.

Intuitively speaking this system is persistently excited since
every vertex of the nominal differential inclusion (achieved for
ε = 0) takes part (at least with some ε contribution) to the
formation of the state derivative direction. This arises naturally in
the context of BINs since a topology-based criteria based on the
absence of critical siphons is sufficient to prove nonextinction of
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all chemical species (a property known also as persistence [8])
and this leads to a potentially tighter embedding as in (20).

Hence, for a given LDI (20) and the associated PWL Lyapunov
function V (z), we define the matrices given below

Mi := [AT
1 ci, A

T
2 ci, . . . , A

T
s ci] (22)

for all i ∈ {1, 2 . . . L}.
Our main result for this section is stated below.
Theorem 2: Let V (z) be a PWL common Lyapunov function

for system (20) with ε = 0. Assume that

Ker[MT
i ] = {0}, ∀ i ∈ {1, 2, . . . , L}. (23)

Then, for all ε > 0 the PELDI (20) is uniformly exponentially
stable.

Proof: Fix any ε > 0 and let x(t) be an arbitrary solution of
(20). Since V is a common Lyapunov function for (20) with
ε = 0 it is a fortiori a common Lyapunov function for (20)
because of the inclusion Aε ⊂ A0. Hence, V (x(t)) ≤ V (x(0))
for all t ≥ 0. Hencex(t) is bounded (by positive definiteness and
radial unboundedness of V ). The Lyapunov function V (x(t))
is nonincreasing along x(t) and therefore it admits a limit as
t→ +∞. Let v̄ ≥ 0 be the value of this limit. The solution x(t)
approaches its nonempty ω-limit set ω(x(·)) and V (x̄) = v̄ for
all x̄ ∈ ω(x(·)). The set ω(x(·)) is weakly invariant, [35]. We
pick an arbitrary solution x̃(t) of (20), such that x̃(t) ∈ ω(x(·))
for all t ≥ 0. For each t ≥ 0 we consider the set of active vectors

C(t) := {k : V (x̃(t)) = cTk x̃(t)} (24)

and define the corresponding set-valued map, C : t �→ 2{1,...,L}.
By continuity of x̃(t) the set-valued map C is upper semicontin-
uous, viz. for any t and any open neighborhood U of C(t) there
exists a neighborhood Nt of t, such that C(Nt) ⊂ U . Hence,
sinceC only takes discrete values, we see that the above inclusion
can be strengthened to C(Nt) ⊂ C(t). Letting t be a point where
the cardinality of C(t) is minimal (which exists by finiteness of
the set {1, 2, . . . , L}), we see that C(Nt) = C(t) and therefore
there exists an interval [t, t̃] (t̃ > t), where C(τ) = C(t) for all
τ ∈ [t, t̃].

Pick any k ∈ C(t). We know that V (x̃(τ)) = cTk x̃(τ) = v̄ for
all τ in the considered interval. Hence, by definition of solution
of (20)

cTk ˙̃x(τ) = cTk

s∑
�=1

α�(τ)A�x̃(τ) =

s∑
�=1

α�(τ)c
T
kA�x̃(τ) = 0

for some α�(τ) ≥ ε, and almost all τ ∈ [t, t̃]. Recalling that
cTkA�x̃(τ) ≤ 0, and using continuity of x̃(τ) this in turn implies

cTkA�x̃(τ) = 0, ∀ � ∈ {1, 2, . . . , L} ∀τ ∈ [t, t̃].

Hence, x̃(τ) belongs to Ker[MT
k ], and by assumption (23)

x̃(τ) = 0. By strong invariance of the origin, this implies
ω(x(·)) = {0} and therefore (see, e.g., [36, Th. 2]) uniform
exponential stability of (20) for all ε > 0 follows, by a standard
relaxation argument.

Remark 4: Conditions (23) are used to rule out, using a
first-order derivative test, existence of nonzero solutions of (20)
evolving on a level-set of V for some time-interval. As such,

they could be relaxed by formulating higher order differential
tests. This, however, would increase significantly the complexity
of their verification. Such relaxation was not needed in practical
examples.

Remark 5: It is shown in [15] that a BIN admitting a non-
strict polyhedral Lyapunov function is asymptotically stable iff
a robust nonsingularity condition (for strictly positive linear
combinations) holds on the matrices defining the embedding
of the nonlinear differential equation. Theorem (2) differs in
several respects.

It is, in fact, a stability result for an LDI, rather than for
nonlinear dynamics which are embedded within an LDI. Notice
also that the matrices Mi in (22) both involve the Lyapunov
function vectors ci and the dynamics of the switched system. As
such, condition (23) is not immediately related to a condition
of robust nonsingularity which, by definition, only involves the
matrices of the switched system. We cannot rule out that, on a
deeper level, condition (23) might be related or even equivalent
to a robust nonsingularity test.

IV. ROBUST NONOSCILLATION OF BINS

In this section we study nonoscillation of BINs as described
in §2.

A. Background on BINs

We use the standard notation [2], [5], [12]. A BIN (also called
a CRN) is a pair (S,R) with a set of admissible kinetics KS,R
to be defined below.

Stoichiometry: The finite set of species is denoted by S :=
{S1, S2, . . . , Sns

}, which combine and transform through a
finite set of reactions, R := {R1,R2, . . . ,Rnr

}. A nonnegative
linear integer combination of species is called a complex, and
an ordered pair of complexes define a reaction which is written
customarily as

Rj :

ns∑
i=1

αijSi →
ns∑
i=1

βijSi

with integer coefficients αij , βij (called the stoichiometry co-
efficients). These are usually arranged in a matrix [Γ]ij :=
βij − αij , called the stoichiometry matrix, whose (i, j) entry
specifies the net amount of molecules of Si produced or con-
sumed by reaction Rj . If

∑ns

i=1 βijSi →
∑ns

i=1 αijSi is also
a reaction, then we say that Rj is reversible and we write∑ns

i=1 αijSi �
∑ns

i=1 βijSi.
Kinetics: The kinetics of the BIN can be defined by introduc-

ing a nonnegative state vector x = [x1, x2, . . . , xns
]T quantify-

ing the concentration of each species and a choice of kinetics,
i.e., a functional expression for the rates at which the corre-
sponding reaction takes place:R(·) : Rns

≥0 → Rnr
≥0.The function

R(·) can take many forms, and we assume that it satisfies basic
smoothness and monotonicity requirements defined as follows.

A1. Rj(x) is continuously differentiable, j = 1, .., nr .
A2. if αij > 0, then xi = 0 implies Rj(x) = 0.
A3. ∂Rj/∂xi(x) ≥ 0 if αij > 0 and ∂Rj/∂xi(x) ≡ 0 if

αij = 0.
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A4. The inequality in A3 holds strictly for all positive con-
centrations, i.e., when x ∈ Rn

+.
Condition A2 represents the fact that a reaction cannot occur

when any of its reactants is missing. Conditions A3 and A4
require that, at least in the interior of the positive orthant,
rates be strictly monotone functions of reactants’ concentrations.
Furthermore, A3 specifies that only reactants can influence the
rate of any reaction. If a reaction rate R satisfies A1–4 we say
that it is admissible. The set of all admissible reaction rates of a
given BIN (S,R) is denoted by KS,R.

A typical choice of kinetics are the so called mass-action
kinetics, which correspond to the following polynomial expres-
sion:

Rj(x) = kj

ns∏
i=1

x
αij

i (25)

for some constant parameter kj > 0 and with the convention
that a0 = 1 for all a ∈ R.

Dynamics: the dynamical system associated to the BIN is by
definition

ẋ = ΓR(x). (26)

This is a (generally) nonlinear, positive system, meaning that
solutions have nonnegative coordinates given that the initial
conditions do. For each initial condition x0, the affine space
Cx0

= x0 + Im[Γ] is so that the corresponding solution ϕ(t, x0)
belongs to Cx0

for all t ≥ 0, i.e., Cx0
is forward invariant. Hence,

the system dimension is often reduced by taking into account an
independent set of conservation laws (viz. vectors in Ker(ΓT ))
and regarding the flow induced by (26) as parametrized by the
total amount of each conservation law, and evolving on a lower
dimensional space defined by the corresponding stoichiometry
class. This is the approach that we will pursue also throughout
this article. In particular, we will choose a basis for Ker(ΓT )
(assumed of dimension c) as {v1, v2, . . . , vc} and complete it to
a basis of Rn, {v1, v2, . . . vc, vc+1, . . . , vn} so that, defining the
matrix

T = [v1, v2, . . . , vn]
T

we may define the system in x̃ coordinates according to x̃ = Tx.
Accordingly the new equations read

˙̃x = TΓR(T−1x̃) =

[
0nc

ΓrR(T
−1x̃)

]
(27)

where Γr = [vc+1, . . . , vn]
TΓ is a reduced stoichiometry ma-

trix. Of course, the natural state space in x̃ coordinates, (i.e.,
TRn

≥0) is not necessarily the positive orthant, but possibly a
subset of it (as the individual vectors vi, i = 1, . . . , n are often
chosen to be nonnegative). Notice that, the vector x̃ can be par-
titioned according to [x̃c, x̃d], where x̃c corresponds to the first
c components of x̃ (which are constant along solutions) while
x̃d corresponds to the remaining n− c coordinates evolving
according to nontrivial dynamics.

Siphons: Since (26) evolves on the positive orthant, certain
trajectories might approach the boundary of the orthant asymp-
totically, i.e., some species might go extinct. If no species

becomes extinct for every positive initial state, then the dy-
namical system is said to be persistent. In order to characterize
persistence graphically, we need some definitions. Let P ⊂ S
be a nonempty set of species. A reaction Rj ∈ R is said to be
an input reaction to P if there exists Si ∈ P , such that βij > 0,
while a reaction Rj ∈ R is said to be an output reaction to P
if there exists Si ∈ P , such that αij > 0. Then, the set P is
called a siphon if each input reaction associated to P is also an
output reaction associated to P [8]. The species that correspond
to the support of a nonnegative conservation law automatically
constitute a siphon. Hence, any siphon that contains the support
of a conservation law is said to be trivial. If a siphon is not trivial,
then it is said to be critical. If a BIN has no critical siphons, then
(26) is persistent for any choice of monotone kinetics [8].

Graphical representation: A BIN can be represented as a
graph in various ways. We adopt the Petri-net representation [8],
[25], which is also equivalent to a species-reaction graph [28].
For a given BIN, species correspond to places, while reactions
correspond to transitions. The incidence matrix of the Petri-net is
simply the stoichiometry matrixΓ. An example will be discussed
next.

Example: Referring to the motivational example (1)–(2), the
reactions are ordered as

L+Rc
R1

�
R2

K, S +K
R3

�
R4

C
R5−→P +K, P

R6−→S. (28)

The concentrations x1, .., x6 correspond to the species
L,Rc,K, S,C, P , respectively. The ODE can be written as

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0
−1 1 0 0 0 0
1 −1 −1 1 0 0
0 0 −1 1 1 1
0 0 1 −1 −1 0
0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

R1(x1, x2)
R2(x3)
R3(x3, x4)
R4(x5)
R5(x5)
R6(x6)

⎤
⎥⎥⎥⎥⎥⎥⎦ (29)

where the rates Rj , j = 1, .., 6 satisfy the Assumptions A1–4.
Beyond these assumptions we do not assume that anything
is known about them. The Petri-net graph of the network is
depicted in Fig. 1(a).

The BIN (28) has three conserved quantities which are the
total receptor, the total ligand, and the total substrate. The corre-
sponding conservation laws can be written as: x1 + x3 + x5 =
x1,tot, x2 + x3 + x5 = x2,tot, x4 + x5 + x6 = x3,tot. Note that
the network has no critical siphons and hence it is persistent.
The conservation laws can be used to reduce the equation above
from a six-dimensional to a three-dimensional ODE. For in-
stance, we can choose the independent variables to be x1, x3, x6
(corresponding to L,K,P ). Hence T can be written as

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0

0 1 1 0 1 0

0 0 0 1 1 1

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (30)
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For given total positive conserved quantitiesx1,tot, x2,tot, x4,tot >
0, we obtain in this manner an ODE for the evolution of x̃d(t) =
[x1, x3, x6]

T (t), as follows:

˙̃xd =

⎡
⎣−1 1 0 0 0 0

1 −1 −1 1 0 0
0 0 0 0 1 −1

⎤
⎦R(x̃d) (31)

where

R(x̃d) =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1(x1, x1 − x1,tot + x2,tot)
R2(x3)

R3(x3, x4,tot − x1,tot + x1 + x3 − x6)
R4(x1,tot − x1 − x3)
R5(x1,tot − x1 − x3)

R6(x6)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

While, as is well known, this change of coordinates conveniently
achieves a dimensionality reduction of the underlying dynamics,
it plays a crucial role in enabling the analysis of BINs by using
second additive compound matrices. This is so because struc-
tural zero eigenvalues of the Jacobian are removed, opening up
the possibility of establishing uniform exponential convergence
of the associated variational equations.

B. Lyapunov Criteria for Robust Nonoscillation of BINs

We apply the concept of nonoscillation to BINs. Since the
reaction rates are not assumed to be known beyond satisfying
assumptions A1–4, we aim at establishing a notion of robust
nonoscillation.

Definition 3: Let a BIN (S,R) be given. We say that it is
robustly nonoscillatory if the associated dynamical system (26)
is nonoscillatory for every choice of kinetics R ∈ KS,R.

We aim at proving the nonoscillatory nature of the dynamics
by embedding the variational equation associated to the second
additive compound matrix within an LDI. This is reminiscent of
our approach for treating robust global stability for BINs [12],
[13]. To this end, take the Jacobian of the x̃-dynamics (27), as
the principal submatrix of indices {c+ 1, . . . n}

Jr(x̃) =

[
TΓ

∂R

∂x
T−1

]
c+1,...,n

= Γr
∂R

∂x
T−1

[
0

In−c

]
. (32)

Accordingly, the variational equation associated to (26) can be
rewritten as

˙̃xc = 0,
˙̃xn = ΓrR(T

−1x̃)

δ̇(2) = Jr(x̃)
(2) δ(2)

(33)

which has the advantage of a smaller δ(2) variable, of di-
mension N :=

(
n−c
2

)
, driven by a (n− c)-dimensional flow,

parametrized by the initial condition x̃c(0). As in classical
embedding approaches, [12],[13], [14], one may write Jr as
a positive combination of rank-one stable matrices, where each
matrix corresponds to a reaction–reactant pair. The set of all
such pairs is denoted as

P = {(j, i)|Si participates in the reaction Rj}. (34)

Let s be the cardinality of P . Then

∂R

∂x
=

∑
i,j

eje
T
i

∂Rj

∂xi
=

s∑
�=1

ρ�(t)eje
T
i

where ρ� := ∂Rj�/∂xi� , (j�, i�) ∈ P, � = 1, .., s. By substitu-
tion into (32), we get

Jr =

s∑
�=1

ρ�

(
(Γrej)(e

T
i T

−1

[
0

In−c

]
)

)
=:

s∑
�=1

ρ�A�. (35)

Since the second additive compound is linear in the entries of
the original matrix, we get

J (2)
r =

s∑
�=1

ρ�A
(2)
� . (36)

Therefore, we study (33) by studying the LDI

˙δ(2)(t) ∈ cone{A(2)
1 , . . . , A(2)

s }δ(2)(t) (37)

whereAi are the corresponding rank one matrices as in (35). The
main result for this section is a theorem to guarantee uniform
exponential stability of the δ(2)-subsystem in (33) so that one
may apply Theorem 1 with ease to BINs with uncertain kinetics.

Theorem 3: Let a BIN (S,R) be given, and assume that
it does not have critical siphons. Assume that the associated
LDI (37) admits a PWL common Lyapunov function as in
(18) fulfilling the additional conditions (23). Then, for any
compact K ⊂ (0,+∞)n there exist M, λ > 0, such that for all
x̃(0) ∈ TK (i.e., the image of K under the linear map T ) and
all δ(2)(0) ∈ RN the corresponding solutions of (33) fulfill

|δ(2)(t)| ≤Me−λt|δ(2)(0)| ∀t ≥ 0.

The remainder of this section is dedicated to the proof of
Theorem 3. To that end, we need to introduce some additional
concepts and an improved version of the so called Siphon
Lemma, to be defined below. For a compact set K, we denote
the corresponding ω-limit set as

ω(K)

= {x ∈ Rn : ∃ tn → +∞, xn ∈ K : lim
n→+∞ϕ(tn, xn) = x}.

Notice that by construction this set contains
⋃

x0∈K ω(x0). It is,
however, a potentially bigger set. For this reason the following
is an improved version of the siphon Lemma, [7], [8].

Lemma 3: Let K ⊂ (0,+∞)n be compact and assume that
y ∈ ∂(0,+∞)n ∩ ω(K). Then, {Si ∈ S : yi = 0} is a siphon.

We recall that the original siphon lemma only states this
property forK being a singleton. We prove it in the Appendix for
the case of compact sets, thus generalizing the proof presented
in [7]. This opens up the possibility of achieving structural
criteria for uniform persistence in BINs. In fact, (see [37, p.
8]), the following holds for ω(K).

Lemma 4: Consider a continuous flow and a compact set K,
such that cl(

⋃
t≥0 ϕ(t,K)) is bounded. Thenω(K) is nonempty,

compact, invariant, and uniformly attracts K.
We are specifically interested in compactness of ω(K).

This is crucial, since the property does not necessarily hold
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for
⋃

x0∈K ω(x0). Our main result hinges upon the following
Lemma of independent interest.

Lemma 5: Consider a chemical reaction network with uni-
formly bounded solution, i.e., for all compact K ⊂ Rn

≥0, there
exists K̃ compact, such that ϕ(t,K) ⊂ K̃ for all t ≥ 0. As-
sume that all siphons are trivial. Hence, for any compact K ⊂
(0,+∞)n, there exist ε > 0 and K̃ compact in [ε,+∞)n, such
that ϕ(t,K) ∈ K̃ for all t ≥ 0.

Proof: Let K ⊂ (0,+∞)n be arbitrary. By assumption
ϕ(t,K) is uniformly bounded, hence by Lemma 4, ω(K) is
nonempty and compact. Its intersection with ∂[0,+∞)n, on the
other hand, is empty, since any point y ∈ ω(K) ∩ ∂[0,+∞)n

fulfills that {Si : yi = 0} is a siphon, by virtue of Lemma 3.
By the triviality of siphons, in turn, this amounts to existence
of a nonnegative conservation law v 
= 0, such that vT y = 0.
This contradicts definition of y since, y = limn→+∞ ϕ(tn, ξn)
for ξn ∈ K and as a consequence

0 = vT y = lim
n→∞ v

Tϕ(tn, ξn)= lim
n→∞v

T ξn ≥ min
ξ∈K

vT ξ > 0.

As a consequence, ε := minξ∈ω(K) mini ξi > 0. We see that
ω(K) ⊂ [ε,+∞)n ∩ K̃, where K̃ is as in the statement of the
Lemma. Moreover, ω(K) uniformly attractsK, so that there ex-
ists T > 0, such that for all t ≥ T , ϕ(t,K) ⊂ [ε/2,+∞) ∩ K̃.
Finally, combining this latter inclusion, with the fact that solu-
tions ϕ(t,K) are uniformly away from the boundary over any
compact interval, i.e., for t ∈ [0, T ] we prove the claim.

We are now ready to prove Theorem 3.
Proof: Let K ⊂ (0,+∞)n be an arbitrary compact. By

Lemma 5, there exist s ε > 0 and K̃ compact in [ε,+∞)n, such
thatϕ(t,K) ∈ K̃ for all t ≥ 0. Hence, by the strict positivity as-
sumption on ∂R

∂x there exist ε > 0, such that the δ(2) component
of the solutions of (33) can be embedded in that of a PELDI as in
(20). The theorem follows thanks to the fulfillment of conditions
(23) and by virtue of Theorem 2.

V. CONSTRUCTION AND EXISTENCE OF PWL
LYAPUNOV FUNCTIONS

In this section, we provide a fast iterative method for con-
structing Lyapunov functions, and also interpret the LDI in
discrete-time settings.

A. Fast Iterative Construction Algorithm

Construction of PWL Lyapunov functions is a longstanding
problem in systems and control [38], [39], and several iterative
algorithms have been proposed [40]. Along similar lines, we
have proposed an iterative algorithm for constructing PWL
Lyapunov functions in our previous works [10]–[12], where the
dynamics can be embedded in a rank-one LDI. Since the second
compound matrices (37) are of rank N − 1, we will generalize
the aforementioned approach to handle such cases.

The PWL function (18) satisfies the nonincreasingness con-
dition in Definition 2 if we have ∇V (z)A

(2)
� z ≤ 0 whenever

∇V (z) exists. Note that we can write the following:

∇V (z) = cTk for all z ∈
{
z

∣∣∣∣cTk z = max
j∈{1,..,L}

cTj z

}◦

where “◦” denotes interior. Therefore, we need the following
condition to be satisfied ∀� = 1, .., s∀k = 1, .., L:

cTkA
(2)
� z ≤ 0 whenever cTk z = max

j∈{1,..,L}
cTj z. (38)

In other words, the time-derivative of the kth linear component
cTk z needs to be nonpositive only when the kth linear component
is active.

Since we are looking for robust, i.e., kinetics-independent
conditions, we need to to impose a geometric condition relating
the vectors c1, .., cL with the matrices A(2)

1 , . . ., A
(2)
s . This can

be achieved by noting that the (38) is automatically satisfied if
−cTkA(2)

� lies in the conic span of {cTk − cTj |j = 1, .., L, j 
= k}.
By the Farkas Lemma [41], (38) is satisfied if there exist scalars
λ
(k�)
j ≥ 0, j = 1, .., L, with

∑
j 
=� λ

(k�)
j > 0, such that

−cTkA(2)
� =

∑
j 
=k

λ
(k�)
j (cTk − cTj ). (39)

Hence verifying the nonincreasingness of the RLF reduces to
satisfying the condition (39).

The algorithm starts with an initial matrix C0 =
[c1, .., cL0

]T ∈ RL0×N , where N :=
(
n−c
2

)
, and we let

V0(z) = maxk∈{1,..,L0} c
T
k z. We choose C0 = diag[IN ,−IN ]

to guarantee positive-definiteness of V .
For each ck (amongst the rows of C0), and for each �, we

need to verify that condition (39) is satisfied. If not, we compute
a new row c∗ chosen as to satisfy −cTkA(2)

� = ck − c∗. Hence

c∗T := cTk (A
(2)
� + I). (40)

The new vector is appended to the matrix C0 to yield a new
matrix C1 := [CT

0 , c
∗]T . The same process is repeated for each

row vector of the coefficient matrix until either no new vectors
need to be added or that the number of iterations exceeds a
predefined number.

There can be many variations on the basic recipe above.
Hence, we state the following.

Theorem 4: Given a network (S,R). If Algorithm 1 termi-
nates successfully, then V is a common Lyapunov for the LDI
ż ∈ cone{A(2)

1 , .., A
(2)
s }.

B. Existence of PWL Lyapunov Functions for LDIs

Recall that the dynamics of a BIN can be embedded in an
LDI of rank-one matrices (35), and that the dynamics of (33)
can be studied by the LDI of the corresponding second-additive
compounds. Our aim in this section is to provide alternative
characterization for the existence of PWL Lyapunov functions
for LDIs of rank-one stable matrices and their second com-
pounds. We will use their specific properties (and their matrix
exponentials) in order to simplify the test of property (21).
Some of the results in this subsection recover the discrete-time
approach first introduced in [14] for studying the stability of
BINs.
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We start by stating the following result.
Lemma 6: For a square rank one matrix A = vwT (and

nonzero vectorsv, w ∈ RN for any integerN > 0) the following
expression holds:

eAt = I + vwT

∫ t

0

e(w
T v)τ dτ. (41)

Notice that the exponential inside the integral is a scalar
exponential. Hence, a nontrivial rank one linear system (with
A 
= 0) is globally stable if and only if wT v < 0, (in fact for
wT v > 0 exponential instability arises, while for wT v = 0 the
matrix exponential grows linearly in time). Hence, without loss
of generality we limit our discussion to rank one switched linear
systems, such that wT

� v� < 0 for all � ∈ {1, .., L}.
We show that the matrix exponential of a rank-one stable

matrix can be written always as a convex combination of I
and the asymptotic value of the matrix exponential. The same
also holds for the matrix exponential of its second additive
compound. This is stated in the following Lemma.

Lemma 7: Let A = vwT be a stable n× n rank one real
matrix, for suitable vectors v, w ∈ Rn. Denote by A(2) the
associated second additive compound matrix. Then

1) eAt = e(w
T v)tI + (1− e(w

T v)t)Π, where Π =
limt→+∞ eAt;

2) eA
(2)t = e(w

T v)tI + (1− e(w
T v)t)Π2, where Π2 =

limt→+∞ eA
(2)t.

Proof:
1) Using Lemma 6, we can write:

eAt = I +
vwT

wT v
(e(w

T v)t − 1),

which can be rearranged into eAt = e(w
T v)tI + (1−

e(w
T v)t)Π, where

Π := lim
t→+∞ e

At = I − vwT

wT v
.

2) Let SKn denote the class of n× n real skew-symmetric
matrices, viz. SKn = {X ∈ Rn×n : X = −XT }. For
any matrix A ∈ Rn×n, the linear operator L defined as

L(X) := AX +XAT

is an endomorphism in SKn, viz. L : SKn → SKn.
Moreover, the second additive compound matrixA(2) can
be interpreted as a representation of L, with respect to
the canonical basis Bn := {eieTj − eje

T
i , i < j} of SKn,

where i and j take values in {1, 2, . . . , n}, ei denotes the
ith element of the canonical basis of Rn, and elements
of Bn are listed according to lexicographic ordering of
the underlying index pairs {i < j}, see [22]. Hence, the
matrix exponential eA

(2)t can equivalently be computed
by looking at the operator induced by the solution of the
linear matrix differential equation

Ẋ = L(X).

This is well known to beX(t) = eAtX(0)eA
T t which in

the case of A being of rank one (assuming without loss
of generality wT v = −1)

X(t) = (I − (e−t − 1)vwT )X(0)(I − (e−t − 1)vwT )T

= X(0)− (e−t − 1)vwTX(0)− (e−t − 1)X(0)wvT

+ (e−t − 1)2v wTX(0)w︸ ︷︷ ︸
=0

vT

= e−tX(0) + (1− e−t)[X(0) + vwTX(0) +X(0)wvT ].

Hence the result follows by noticing that

lim
t→+∞X(t) = [X(0) + vwTX(0) +X(0)wvT ]

and letting Π2 be the matrix associated to the operator
L∞(X) := [X + vwTX +XwvT ] acting on real skew-
symmetric matrices of dimension n.

This allows to recast condition (21) in a simpler way that does
not directly involve time.

Lemma 8: Let the matricesA1, .., As ∈ RN×N , and a convex
locally Lipschitz function V : RN → R≥0 be given. Assume
that A�, � = 1, .., s are either stable rank-one matrices or their
second additive compounds. Then, V is a common Lyapunov
function for the LDI ż(t) ∈ cone{A1, .., As} iff V is positive
definite and

V (Π�z) ≤ V (z), ∀ z∀ � ∈ {1, .., s} (42)

where Π� := limt→∞ eA�t.
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Proof: Fix �. Using Lemma 7, for any t ≥ 0 let α ∈ [0, 1] be,
such that eA�t = αI + (1− α)Π. Assume that (42) holds. Then

V (eA�tz) = V (αz + (1− α)Π�z) ≤ αV (z) + (1− α)V (Π�z)

≤ αV (z) + (1− α)V (z) = V (z).

Hence, condition (21) follows. Conversely, let condition (21)
hold. By letting t go to infinity in both sides of the inequality
and exploiting continuity of V (x) we get

V (Π�z) = V

(
lim

t→+∞ e
A�tz

)
= lim

t→+∞V (eA�tz) ≤ V (z).

Lemma 8 shows that common Lyapunov functions for con-
tinuous time rank-one linear systems (or their second-additive
compounds) can in fact be tested by using the conditions typical
of discrete time LDIs, in particular adopting in place of each
matrix exponential eA�t the corresponding projection matrix
Π�. This has some advantages, in particular as we may show the
instability of a given LDI as we will demonstrate in the examples
section. Further, we may consider a closed-form expression for
V (z) of the following form:

V (z) := sup
L∈N,w∈{1,..,s}L

∣∣∣∣∣
(

L∏
k=1

Πwk

)
z

∣∣∣∣∣
1,∞

(43)

where, for simplicity, either 1 or ∞ norms (both piecewise
linear) are adopted. For any initial condition z, the expression in
(43) amounts to computation of the maximum 1 or ∞ norm
of all possible forward solutions of the discrete differential
inclusion induced by Π�, for � = 1, 2, . . . , s. For this reason,
V (z) as defined above is well posed (bounded) if and only if the
corresponding LDI is stable. Notice that the supremum in (43) is
taken over an infinite number of possible product combinations.
In practice, it is often the case that only a finite number of such
products actively contribute to the value of V (z) over Rn and,
as a consequence, a finitely verifiable construction algorithm for
polytopic Lyapunov functions can be derived by using the above
formula whenever it is realized that only words of up to a fixed
length actively contribute to the value of V (z).

It can be noted that this alternative algorithm is computation-
ally slower than Algorithm 1, and it has yielded the same results
that we got using Algorithm 1. On the other hand, the second
algorithm can be terminated quickly if the spectral radius of
one of the products in (43) exceeds 1 since this means that the
corresponding LDI is exponentially unstable.

Remark 6: Alternative methods can be proposed for deriving
the Lyapunov functions. This includes studying the correspond-
ing LDI in reaction coordinates [12], [13], or via the concept of
duality. In particular, one may consider the LDI associated to
(A

(2)
i )T = (AT

i )
(2). Such LDI enjoys the same stability proper-

ties of the original one and any Lyapunov function for the latter
can be transformed to a Lyapunov function for the first one using
well-known techniques, see for instance [14].

VI. BIOCHEMICAL EXAMPLES

A. PTM Cycle Regulated by the Binding of a Receptor
and a Ligand

We continue studying the regulated PTM (28) which was first
introduced in [29]. Its Petri-net is depicted in Fig. 1(a). The
ODE describing the network is given in (29). This network is
known to fulfill all necessary conditions for existence of a PWL
RLF (either in species or rates coordinates) but whose global
asymptotic stability is still an open problem [12].

The reduced Jacobian (35) [defined via the transformation
matrix (30)] is a linear (positive) combination of the following
rank one matrices:

A1=

⎡
⎣−1 0 0

1 0 0
0 0 0

⎤
⎦, A2=

⎡
⎣−1 0 0

1 0 0
0 0 0

⎤
⎦, A3=

⎡
⎣ 0 1 0
0 −1 0
0 0 0

⎤
⎦

A4=

⎡
⎣0 0 0
0 −1 0
0 0 0

⎤
⎦, A5=

⎡
⎣ 0 0 0
−1 −1 1
0 0 0

⎤
⎦, A6=

⎡
⎣ 0 0 0
−1 −1 0
0 0 0

⎤
⎦

A7 =

⎡
⎣ 0 0 0
−1 −1 0
−1 −1 0

⎤
⎦ , A8 =

⎡
⎣ 0 0 0
0 0 0
0 0 −1

⎤
⎦ .

Notice that the LDI

ẋ(t) ∈ {A1, . . ., A8}x(t)
is not Lyapunov stable as there exists a combination of matrices
exhibiting linear instability. In particular

e(A4+A7)t =

⎡
⎣ 1 0 0

e−2t

2 − 1
2 e−2t 0

e−2t

4 − t
2 − 1

4
e−2t

2 − 1
2 1

⎤
⎦ .

A
(2)
1 =

⎡
⎢⎣−1 0 0

0 −1 0

0 1 0

⎤
⎥⎦, A(2)

2 =

⎡
⎢⎣−1 0 0

0 −1 0

0 1 0

⎤
⎥⎦

A
(2)
3 =

⎡
⎢⎣−1 0 0

0 0 1

0 0 −1

⎤
⎥⎦

A
(2)
4 =

⎡
⎢⎣−1 0 0

0 0 0

0 0 −1

⎤
⎥⎦, A(2)

5 =

⎡
⎢⎣−1 1 0

0 0 0

0 −1 −1

⎤
⎥⎦

A
(2)
6 =

⎡
⎢⎣−1 0 0

0 0 0

0 −1 −1

⎤
⎥⎦

A
(2)
7 =

⎡
⎢⎣−1 0 0

−1 0 0

1 −1 −1

⎤
⎥⎦, A(2)

8 =

⎡
⎢⎣0 0 0

0 −1 0

0 0 −1

⎤
⎥⎦

and, rather than assessing global asymptotic stability we look at
the slightly weaker notion of globally nonoscillatory behavior.
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Fig. 2. Sample trajectories of the regulated PTM with mass-action kinetics. (a) Trajectories of (31) with 500 randomly selected initial conditions.
Note that all trajectories converge to the unique steady state. (b) Corresponding trajectories of δ(2)(t) [as defined in (33)] with randomly chosen
initial conditions δ(2)(0). (c) PWL Lyapunov function V (45) evaluated over the trajectories of δ(2) is decreasing as foretold by our results. (d)
Time-derivatives of V evaluated via MATLAB’s command diff is negative for all t ≥ 0. The chosen reaction rate vector [as in (29)] is R(x) =
[5x1x2, 3x3, 5x3x4, x5, 2x5, 6x6]. The conserved quantities are x1,tot = x2,tot = x4,tot = 15.

Hence, we study stability of the differential inclusion

˙δ(2)(t) ∈ cone{A(2)
1 , A

(2)
2 , . . . , A

(2)
8 }δ(2)(t) (44)

where δ(2)(t) is a vector of dimension
(
n
2

)
. Application of

Algorithm 1 results in the following suitable Lyapunov function
for system (44):

V (δ(2))=max{|δ(2)1 |, |δ(2)2 |, |δ(2)3 |, |δ(2)2 + δ
(2)
3 |, |δ(2)2 − δ

(2)
1 |}.

(45)
Also, the formula (43) (by adopting the ∞-norm) results in the
same function.

Moreover, modeling the network as a Petri net [see Fig. 1(a)]
one can show that it admits three minimal siphons, {R,K,C},
{L,K,C}, and {S,C, P}. These are trivial siphons, as they
coincide with the support of a nonnegative conservation law.
Moreover conditions (23) are fulfilled. Hence, the BIN is
nonoscillatory by virtue of Theorems 3 and 1, regardless of the
specific choice of kinetics.

Additional analysis of the network is possible, The Jacobian
is a P0 matrix for any choice of kinetics, hence the network
cannot admit multiple nondegenerate steady states in a single
stoichiometric class [27], [42]. In addition, it can be shown
that the Jacobian is robustly nondegenerate in the interior of the
orthant [30], [12]. Furthermore, the boundary of any nontrivial
stoichiometric class cannot contain any steady states due to
the absence of critical siphons [8], hence no more than one
steady state can exist in the interior of each stoichiometric class.
More recently, sum-of-square optimization has been used to
show that the reduced Jacobian is Hurwitz at any steady state,
i.e., each steady state is locally asymptotically stable relative
to its stoichiometric class [30]. The existence of at least one
steady state follows by the Brouwer’s fixed point theorem [43]
or Poincaré–Hopf theorem [44]. To summarize, each nontrivial
stoichiometric class contains a unique locally asymptotically

stable steady state and the network is robustly nonoscillatory.
Though global asymptotic stability is still technically open, this
is a quite tight approximation.

Fig. 2 shows sample trajectories of the system with mass-
action kinetics and the corresponding PWL Lyapunov function
(45) evaluated over the trajectories of δ(2).

B. PTM Cycle Regulated by a Kinase Inhibitor

In this subsection we discuss the network depicted in Fig. 1(b).
This network is interesting as we will show that the correspond-
ing LDI is exponentially unstable.

The reactions are listed below

I +K
R1

�
R2

KI, S +K
R3

�
R4

C
R5−→P +K, P

R6−→S. (46)

The concentrations x1, .., x6 correspond to the species
I,KI,K, S,C, P , respectively.

This network exhibits three conservation laws, x1 +
x2 = const, x2 + x3 + x5 = const, and x4 + x5 + x6 = const.
Hence, each stoichiometry class is 3D. Choosing x2, x5, and
x6 as independent coordinates we achieve a reduced Jacobian
matrix of the following form:

Jr=

⎡
⎣−ρ3,3 − ρ3,4 − ρ4,5 − ρ5,5 −ρ3,3 −ρ3,4

−ρ1,3 −ρ1,1 − ρ1,3 − ρ2,2 0
ρ5,5 0 −ρ6,6

⎤
⎦

where ρj,i :=
∂Rj

∂xi
, (j, i) ∈ P are treated as arbitrary time-

varying positive coefficients.
The associated LDI, however, does not admit a common Lya-

punov function. Indeed, by constructing products of the resulting
Π� matrices (defined in Section V-B), there exist finite products
(of length 5 or higher) with spectral radius strictly bigger than
1. A Lyapunov function can instead be found for the embedding
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to the LDI of second additive compound matrices. In particular

V (δ(2)) = max{|δ(2)1 |, |δ(2)2 |, |δ(2)3 |, |δ(2)1 − δ
(2)
3 |}

is a suitable Lyapunov function. In addition, the Petri net admits
3 minimal siphons, {I, EI}, {EI,K,C}, {S,C, P}, which are
trivial. Again the main results of the article can be applied
to conclude that this is a robustly nonoscillatory dynamical
system within each compact set included in the (strictly) positive
orthant. Furthermore, similar to the previous example, it can be
shown that each nontrivial stoichiometric class contains a unique
positive steady state.

Similarly, the network in Fig. 1(c) can be shown to be robustly
nonoscillatory using Algorithm 1.

VII. CONCLUSION

We have proposed the notion of nonoscillation to be studied as
a useful verifiable property of nonlinear systems. A Lyapunov
criteria has been proposed for robust nonoscillation. We have
applied our theory to the study of BINs with general kinetics, and
demonstrated the power of the theory for the study of regulated
enzymatic cycles.

The failure of the existence a PWL RLF for the LDI associated
to a BIN has no bearing on the actual properties of the BIN.
While such conditions (existence of Lyapunov functions) are
essentially necessary and sufficient for the study of stability in
LDIs, they might be conservative for the study of BINs. These,
in fact, are uncertain nonlinear systems merely embedded within
an LDI but do not necessarily share all the dynamical behaviors
of the LDI. For instance, many BINs naturally have bounded
solutions due to invariance of the positive orthant and existence
of conservation laws, but this does not imply the resulting LDI
will necessarily fulfil similar boundedness properties (invariance
of the positive orthant is often not preserved in the embedding
process).

Although we have demonstrated the theory for systems which
have unique steady states, the results are applicable to multi-
stable systems, and finding a robustly nonoscillatory multistable
BIN will be a highly interesting endeavour.

To be concrete, and because of our interest in periodic
or quasiperiodic behavior, we have restricted attention to
parametrizations of invariant sets by tori, including circles.
However, the same method can be used to rule out invariant
sets of positive measure that are parametrized by more general
compact manifolds.

VII. APPENDIX

A. Time-Derivative of a Locally Lipschitz Lyapunov
Function

We include the following lemma and its proof. A similar
lemma has been proven in [12, Supplementary Information].

Lemma 9: Let the matrices A1, .., As ∈ RN×N , a nonneg-
ative scalar ε ≥ 0, and a locally Lipschitz function V : RN →
R≥0 be given. LetAε be as defined in (19), and let ż(t) ∈ Aεz(t)
be the corresponding LDI. Then for any trajectoryϕ(t; z0) of the

LDI, we have: d
dtV (ϕ(t; z0)) ≤ 0 for all t ≥ 0, iff∇V (z)A�z ≤

0 for all z, such that ∇V (z) exists and for all � = 1, .., s.
Proof: Fix t. Let z := ϕ(t; z0) be a trajectory of the LDI, and

let ż := d
dtϕ(t; z0) ∈ Aεz. We can write

d

dt
V (z(t)) = lim sup

h→0+

V (ϕ(t+ h; z0))− V (ϕ(t; z0))

h

=lim sup
h→0+

V (ϕ(t; z0) + h d
dtϕ(t; z0))− V (ϕ(t; z0))

h

= lim sup
h→0+

V (z + hż)− V (z)

h
. (47)

For sufficiency, we just need to prove the following state-
ment: Assume that ∇V (z)A�z ≤ 0 whenever ∇V (z) exists and
for all � = 1, .., s, thenDżV (z) := lim suph→0+(V (z + hż)−
V (z))/h ≤ 0, for all z ∈ Rn and all ż ∈ Aεz.

Since V is assumed to be locally Lipschitz, Rademacher’s
Theorem implies that it is differentiable (i.e., gradient ∇V (z)
exists) almost everywhere [35]. Recall that for a locally
Lipschitz function the Clarke gradient at z is defined
as ∂̄V (z) := co∂V (z), where: ∂V (z) := {p ∈ Rn : ∃zi →
zwith∇V (zi) exists, such that, pT = limi→∞ ∇V (zi)}.

Let p ∈ ∂V (z) and ż ∈ Aεz. Let {zi}∞i=1 be any sequence
as in the definition of the Clarke gradient, such that ∇V (zi) →
pT . Furthermore, by the assumption stated in the Lemma, we
have ∇V (zi)A�zi ≤ 0 for all � and i. Since ż =

∑
� ρ�A�z for

some ρ1, .., ρs ≥ ε, then we can define corresponding sequences
{ρ1i}∞i=1, .., {ρsi}∞i=1 ⊂ [ε,∞), such that żi :=

∑
� ρ�iA�zi →

ż. Hence, ∇V (zi)żi ≤ 0, i ≥ 1. The definition of p implies that
pT ż ≤ 0. Since p is arbitrary, the inequality holds for all p ∈
∂V (z).

Now, let p ∈ ∂̄V (z), where p =
∑

i λipi is a convex combi-
nation of any p1, . . ., pn+1 ∈ ∂V (z). By the inequality above,
pT ż =

∑
i λi(p

T
i ż) ≤ 0. Hence, pT ż ≤ 0 for all p ∈ ∂̄V (z).

As in [35], the Clarke derivative of V at z in the direction
of ż can be written as DC

ż V (z) = max{pT ż : p ∈ ∂̄V (z)}. By
the above inequality, we get DC

ż V (z) ≤ 0 for all z and all ż ∈
Aεz. Since the Dini derivative is upperbounded by the Clarke
derivative [35], we finally get: DżV (z) ≤ DC

ż V (z) ≤ 0
for all z and all ż ∈ Aεz.
We prove necessity now. For the sake of contradiction, as-

sume that there exists �∗, z, such that ∇V (z)A�∗z > 0. Then,
choose ρ1, .., ρs ≥ ε with ρ�∗ chosen sufficiently large, such
that

∑
� ρ�∇V (z)A�z > 0. Then, let z(t) be a trajectory of the

LDI with z(0) = z and ż(0) =
∑

� ρ�A�z ∈ Aεz. Then, since
∇V (z) exists, we have d

dtV (z(0)) =
∑

� ρ�∇V (z)A�z > 0; a
contradiction.

B. Proof of Lemma 2

Proof: Fix A ∈ Aε. Let ϕ(t; z0, A) be a trajectory of ż(t) =
Az(t), z(0) = z0. We start with necessity. Since V is non-
increasing (in time) then V (ϕ(t; z0, A)) ≤ V (z0) for all z0.
Since ϕ(t; z0, A) = eAtz0 and z0 ∈ RN is arbitrary we get
V (eAtz) ≤ V (z) for all z as required.
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For sufficiency, we write V̇ as follows: (where z(t) =
ϕ(t; z0, A))

V̇ (z(t)) = lim sup
h→0+

V (z(t+ h))− V (z(t))

h

= lim sup
h→0+

V (eAhz(t))− V (z(t))

h
≤ 0,

as required.

C. Proof of Lemma 3

Proof: We show the contrapositive of the result. Take any
point y ∈ ∂[0,+∞)n, such that {Si : yi = 0} is not a siphon.
Hence, there exists j ∈ S , such that fj(y) > 0. Fix ε > 0 and
δ > 0, such that fj(x) ≥ δ for all x ∈ Bε(y) and Bε(y) ∩K =
∅. Denote by M > 0 any upper bound of |f(x)| in Bε(y).
Consider any solution ϕ(t, ξ) with ξ ∈ K. If, at any time tε/2 it
enters the ball Bε/2, then by continuity there exists

tε := max{t ≤ tε/2 : |ϕ(t, ξ)− y| = ε}. (48)

Moreover

ε

2
≤ |ϕ(tε/2, ξ)− ϕ(tε, ξ)| =

∣∣∣∣∣
∫ tε

tε/2

f(ϕ(τ, ξ))dτ

∣∣∣∣∣
≤ (tε/2 − tε)M.

Hence, (tε/2 − tε) ≥ ε/2M , and the following holds for the
jth component of the solution at time tε/2:

ϕj(tε/2, ξ) = ϕj(tε, ξ) +

∫ tε/2

tε

fj(ϕ(τ, ξ)) dτ

≥ ϕj(tε, ξ) + δ(tε/2 − tε) ≥ δε/2M.

Moreover, for as long asϕ(t, ξ) belongs toBε(y)we see that the
derivative fj(ϕ(t, ξ)) is going to be nonnegative. As a conse-
quence, |ϕ(t, ξ)− y| ≥ min{ε/2, δε/2M}, for all t ≥ 0. This
shows that y /∈ ω(K) and concludes the proof of the Lemma.
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