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Abstract— In the context of epigenetic transformations in
cancer metastasis, a puzzling effect was recently discovered, in
which the elimination (knock-out) of an activating regulatory
element leads to increased (rather than decreased) activity
of the element being regulated. It has been postulated that
this paradoxical behavior can be explained by activating and
repressing transcription factors competing for binding to other
possible targets. It is very difficult to prove this hypothesis in
mammalian cells, due to the large number of potential players
and the complexity of endogenous intracellular regulatory net-
works. Instead, this paper analyzes this issue through an anal-
ogous synthetic biology construct which aims to reproduce the
paradoxical behavior using standard bacterial gene expression
networks. The paper first reviews the motivating cancer biology
work, and then describes a proposed synthetic construct. A
mathematical model is formulated, and basic properties of
uniqueness of steady states and convergence to equilibria are
established, as well as an identification of parameter regimes
which should lead to observing such paradoxical phenomena
(more activator leads to less activity at steady state). A proof
is also given to show that this is a steady-state property, and
for initial transients the phenomenon will not be observed. This
work adds to the general line of work of resource competition
in synthetic circuits.

I. INTRODUCTION AND BACKGROUND

The field of synthetic biology has as its ultimate goal
to program new or modify existing biological systems, for
applications ranging from cell therapies and regenerative
medicine to biosensing and biofuel production. In general,
a significant obstacle to the development of synthetic bi-
ological circuits is the influence of compositional context:
the fundamental characteristics of a circuit alter in the
presence of additional components due to competition for
resources, off-target interactions, genetic context, growth rate
feedback loops, and retroactivity effects. See e.g. [1], [2],
[3], [4], [5], [6] and [7] for an overview. Unless one designs
mathematically-validated control circuits to compensate for
uncertainty, designers will need to re-adjust each part when-
ever new elements are integrated into a system.

In this paper, we study a synthetic design that aims
to validate the competition principles in a model from
[8] that has been hypothesised to explain a paradoxical
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effect in cell differentiation experiments. The transformation
of genetically identical cells into distinct phenotypes, and
the transitions between these phenotypes, are governed by
complex processes involving epigenetic markers as well as
more classical gene-regulatory networks (GRNs) involving
transcription factors and non-coding regulatory RNAs. In
living cells, such interactions are complicated by the potential
competition of multiple TFs over one target, and also by
the sequestration of a TF by multiple targets. However, it
is not entirely clear whether such effects are able to drive
cellular decision making. In a recent publication [8], we have
hypothesised that the competition for genomic targets among
epigenetic factors can provide an explanation for puzzling ex-
perimental data regarding the epithelial–mesenchymal transi-
tion (EMT) in cancer metastasis. Our mathematical analysis
predicted that when the activity of a regulator is perturbed, it
can lead to the widespread redistribution of epigenetic marks,
thereby influencing the levels of competing regulators.

Since it is hard to test this mechanistic hypothesis through
epigenetic modifications in mammalian cells, we propose
here a synthetic biology analog involving transcription fac-
tors in bacterial cells. In this paper, we review the mechanism
and make mathematical predictions from a model, as well
as a proposed implementation using CRISPR/a technology.
Experimental work is ongoing. In the remainder of this
section, we review our previous results [8].

A. Review of previous work
Regulatory factors competing for the same target. De-
pending on the nature of a regulator, its target can be a
promoter, a histone tail, an mRNA, or others. However,
mathematically, we can represent the state of a given target
using the same simplified three-state model depicted in
Figure 1. If a target has not been subject to the activity

Fig. 1. A simplified model of a target that can occupy three different states.

of a regulator, it retains its nominal state which we call
“unmodified”. A regulator can change the nominal state into
“active” or “silenced” depending on whether it is an activator
or repressor, respectively. If the a target is subject to the
activity of regulators with opposing effects, then it can switch
between the three different states depending on the binding
affinities and the abundances of the regulators.



Fig. 2. Paradoxical results of the knockout experiments from [10].
Knockout of a repressor is not able to restore the full activity of a target gene
(e.g, ZEB1), while knocking out an activator results in maximal activation.

Motivation: Experiments on a cancer cell line. Epigenetic
regulation has many examples in which opposing regulators
compete for the same targets. A prominent example is the
antagonism between the Polycomb complex group (PcG)
and the Trithorax (TrX) group [9]. This system has been
probed in a recent set of knockout experiments in a breast
cancer cell line [10] using CRISPR. The knockout of PRC2
(a PcG repressor) and KMT2D (a TrX activator) initiated two
distinct trajectories of epithelial-to-mesenchymal transitions
(EMTs). Using the language of dynamical systems, the
system settled into two different steady states depending on
the particular perturbation.
Motivation: Paradoxical gene activity pattern. In the
aforementioned experiments, a paradoxical pattern of gene
activation was observed that cannot be easily explained by
known local gene regulatory interactions. Consider a gene
of interest (e.g, ZEB1 which is a major driver of EMT). As
shown in Figure 2, the gene is nominally repressed due to the
dominant activity of the repressor (PRC2). However, when
the repressor is knocked out, the gene achieves a mediocre
amount of activation. In the second knockout experiment, an
activating regulator (KMT2D) is knocked out. In that case,
the gene achieves maximal activation despite the fact that
its main repressor is not knocked-out. The main question is:
how would the direct knockout of a repressing regulator be
less effective in activating a gene compared to knocking out
an activator?. We summarize our answer next.
Our model: off-target competition causes sequestration.
In our recent paper [8], we reviewed the relevant literature
on PcG/TrX regulators and distilled it into four postulates:

1) Regulators compete for binding to the same targets.
2) There is a large number of targets per regulator, e.g

hundreds or thousands.
3) Each regulator has limited levels.
4) When a regulator molecule is active at a given target,

it cannot influence the activity of other targets.
Toy model with two factors. Consider a toy model of two
regulators competing for a target as shown in Figure 3. In
the absence of regulators, the target is assumed to be weakly
active. When the regulators are present, assume that the
repressor is dominant and it is able to robustly silence the

Fig. 3. Repressor knockout case. (a) global context has no effect. (b) global
context has considerable effect.

Fig. 4. Activator knockout case. (A) global context has no effect. (B)
global context has considerable effect.

target. Let us consider an experiment in which the repressor
in knocked out. In a situation in which there is minimal
off-target interference, we expect that the activator utilizes
the absence of its competitor to strongly activate its target
as shown in Figure 3-a). However, assume now that the
activator shares many other targets with the repressor across
the genome, and once the repressor knockout, a “void”
is created across the genome, and the activator has too
many potential targets. Depending on the relative affinities,
the activator can get sequestered into other targets across
the genome leaving out the target gene without activation
as shown in Figure 3-b). The opposite scenario can be
similarly illustrated as in Figure 4 where the repressor is
still nominally dominant. When the activator is knocked out,
the repressor can silence the target when there is minimal
off-target interference as shown in Figure 4-a). However, the
repressor can get sequestered to other off-targets when there
is significant affinity to off-targets as shown in Figure 4-b),
and hence an activator can indirectly activate a target gene
by its absence.

This simplified model can partially explain the paradoxical
results shown in Figure 2. It shows how repressor knockout
can fail to activate a target gene, and how an activator
knockout can activate the target. However, it does not show
how can an activator knockout be more effective at activation
than a repressor knockout. This is since the mechanism
of activation depends on the sequestration of the repressor,
hence it cannot yield an activation that is stronger than a full
repressor knockout. The paper [8] shows how to obtain the
full spectrum of behaviors using three factors: one repressor
and two activators of different strengths. On the other hand,
one can obtain all three cases in Figure 2 provided that partial
knock-outs (i.e., “knock-downs”) of genes are possible.

As explained in the introduction, it is very difficult to
test this mechanistic explanation of the paradoxical effects
through epigenetic modifications in mammalian cells. Thus,



in this work, we describe and analyze a synthetic biology
knock-down model with two factors that uses transcription
factors in bacterial cells.

II. PROPOSED SYNTHETIC CONSTRUCT

The proposed circuit (shown in Figure 5) consists of a pool
of shared resources (activators and repressors) regulating the
production of the output protein by the target gene while
competing with the rest of the genome, modeled as decoy
sites. The transcription factors, activator (A, produced at a

Fig. 5. Proposed project: a synthetic competition circuit. (a) Genetic circuit
diagram and (b) block diagram representation of the proposed system. Solid
lines denote the intended input and outputs and the dashed lines display the
unintended loads due to competition in the circuit.

constant rate uA) and repressor (R, produced at a constant
rate uR) bind to the target sites (T ) to transform into an
active form (TA) and silenced form (TR). The active form of
the target undergoes transcription and translation to produce
the output protein (Y ) at a rate κ > β, where β is the basal
transcription rate in the inactive form of the target. The decoy
sites (D) sequester the resources by forming DA and DR

complexes respectively. The chemical reactions involved are:

∅
uA−−⇀↽−−̄
δ

A ∅
uR−−⇀↽−−̄
δ

R

R+ T
t+r−⇀↽−
t−r

TR, A+ T
t+a−⇀↽−
t−a

TA (Target)

R+D
d+
r−−⇀↽−−
d−
r

DR A+D
d+
a−−⇀↽−−
d−
a

DA (Decoy)

TA
κ−→ Y + TA T

β−→ Y + T

{DA, DR}
δ̄−→ D {TA, TR}

δ̄−→ T

Y
γ−→ ∅. (1)

Here, γ and δ̄ are the corresponding decay rates constant
for the protein and complexes. We assume that transcription
factors degrade and dilute irrespective of being bound to a
gene. The corresponding reaction rate equations (RREs) can

be obtained using mass action kinetics as [11]:

Ȧ = uA − d+a DA+ d−a DA − t+a TA+ t−a TA − δ̄A (2)

Ṙ = uR − d+r DR+ d−r DR − t+r TR+ t−r TR − δ̄R (3)

ḊA = d+a DA− d−a DA − δ̄DA (4)

ḊR = d+r DR− d−r DR − δ̄DR (5)

ṪA = t+a TA− t−a TA − δ̄TA (6)

ṪR = t+r TR− t−r TR − δ̄TR (7)

Ẏ = βT + κTA − γY, (8)

We define the total concentrations of the activator, repressor,
target, and decoy species as:

AT = A+ TA +DA, RT = R+ TR +DR (9)
TT = T + TA + TR, DT = D +DA +DR (10)

with

ȦT = uA − δ̄A, ṘT = uR − δ̄R (11)

ṪT = 0, ḊT = 0. (12)

III. PARADOXICAL EFFECTS AT STEADY STATE AND
TRANSIENTS

For the proposed synthetic circuit governed by equa-
tions (2)-(10), the paradoxical effect is captured in two
scenarios. First, by varying the levels of activator in the
circuit (by changing uA) and second by varying the levels
of decoy sites in the system. The knockout of the activator
binding to the target is achieved by maintaining a high
dissociation constant kta =

t−a
t+a

. Note: hereon the steady-state
concentration of the species x is denoted as x.

A. Increasing activator causing unintended repression

Theorem 1: The output Y of our synthetic circuit depends
in a complicated manner on the input uA:

dY

duA
= (κ− β)

C1(uA)

kta
+ C2(uA), (13)

where

C1 = C

(
1 +

κR

ktr
+

TT

ktr

1 + R
ktr

+ A
kta

+

DT

kdr
(1 + A

kta
)

(1 + R
kdr

+ A
kda

)2

)

C2 =

[
κ

kta
− β

kda

]
RDTC

ktrkdr(1 +
R
kdr

+ A
kda

)2

with C > 0 (provided in a separate technical report [12])
and A and R depend on uA.

Remark 1: Notice that C1 > 0 and

C2

{
> 0 if kta < κkda

β

< 0 if kta > κkda

β .

This means that dY
duA

is the sum of a positive term and a
term which is negative for appropriate parameter choices. In
particular, for large values of kta the negative second term
dominates, so that the dependence of Y on uA is negative:

dY

duA
< 0 for kta → ∞,



contradicting the expectation that A is an activator and hence
larger values of uA should result in larger values of Y .
Proof. Using equation (8), the steady-state levels of the
output protein is:

Y =
βT + κTA

γ
. (14)

At steady state, we have:

DA =
DA

Kda
, TA =

TA

Kta
, (15)

DR =
DR

Kdr
, TR =

TR

Ktr
, (16)

where Kxy =
x−
y +δ̄

x+
y

. Note that as kta → ∞ =⇒ Kta → ∞
for a finite δ̄. Substituting in equations (9)-(10), we get:

AT = A+
TA

Kta
+

DA

Kda
, RT =R+

TR

Ktr
+

DR

Kdr
, (17)

TT = T +
TA

Kta
+

TR

Ktr
, DT =D +

DA

Kda
+

DR

Kdr
, (18)

∴ T =
TT

Ot
, D =

DT

Od
. (19)

where

Ot = 1 +
A

Kta
+

R

Ktr
, Od =1 +

A

Kta
+

R

Ktr

The paradoxical effect is shown by calculating:

dY

duA
=

β

γ

dT

duA
+

κ

γ

dTA

duA
=

β

γδ̄

dT

dAT
+

κ

γδ̄

dTA

dAT
,

as AT = uA

δ̄
from equation (11). Applying product rule after

substituting equation (15) in (19):

dY

duA
=

1

γδ̄

[
κA+ βKta

Kta

dT

dAT
+

κT

Kta

dA

dAT

]
Differentiating equation (19) with AT and substituting:

dY

duA
=

1

γδ̄

(
κT

Kta
− κA+ βKta

Kta

T

Kta +A+ RKta

Ktr

)
dA

dAT

− κA+ βKta

Kta

T

Ktr +R+ AKtr

γδ̄Kta

dR

dAT
(20)

Calculating each derivative individually using equation (17)
and substituting in equation (20), we get:

dY

duA
= (κ− β)

C1

kta
+ C2.

Details of these computations are provided in report [12]

Figure 6 (a) shows the exhibition of paradoxical effect
with increasing the input inducer levels of the activator. As
uA is increased, the total amount of activators in the system
increases. For low values of Kta (Kta = 0.1 and 1), the
output protein level increases as expected with an increase
in the levels of activator. Increasing Kta (to 10 and 100)
and thereby gradually knocking out the direct influence of
the activator on the target engenders the paradoxical effect,

Fig. 6. Paradoxical effect in steady-state levels of the output protein
portrayed for varying the levels of (a) activator input levels (uA for
DT = 20) and (b) total decoy sites (DT for uA = 10) in the system. Two
dimensional response plot between uA and DT showing the existence of the
paradoxical effects for (c) Kta → ∞ and its absence for (d) Kta = 0.1.
The parameter values used for the simulation are: Ktr = 0.1,Kdr =
0.1,Kda = 0.1, TT = 1, RT = 10, κ = 1000, β = 100, and γ = 1.

where increasing uA leads to an initial decrease in the output
levels of Y followed by an increase. For the extreme case
of complete knockout of the activator with Kta → ∞, we
observe a monotonic decrease in the concentration of the
protein. In the two-parameter bifurcation plots in Figure 6
(c), we see that for high Kta value, the paradoxical affect
is observed only after a threshold value of DT. For low
values of DT (say 100), increasing the activator levels have
no significant effects on the output protein levels. On the
other hand for high DT (say 102), increasing the activator
levels shows a decrease in the output protein levels hence the
paradoxical effect. In the case of low Kta value in Figure 6
(d), we see that increasing uA, increases the protein levels
irrespective of the value of DT.

Corollary 1.1: The presence of basal expression is neces-
sary for the exhibition of the paradoxical effect.
Proof. The presence of basal expression is captured by β,
transcription rate in the inactive/neutral form of the target.
Substituting β = 0 in equation (13) implies C2 > 0∀ kta.
Therefore, increasing the amount of activator increases the
output levels irrespective of the value of kta.

B. Dynamics flip during initial transient

One might wonder at what time can one observe the
paradoxical effect. To examine the onset of the paradoxical
effect, we determine the small-time relationship between the
output Y and the input uA. We can represent the system
under consideration as ẋ = f(x, p) where p is the set of
parameters (i.e., rate constants) that the system depends on
and x = {TR, TA, DR, DA, Y, AT, RT}. We define Y (x(t))
as the projection onto the Y species. We indicate the Lie
derivative by Lf(x,p)Y (x(t)) = (∇Y )f(x, p) = dY

dt .
Theorem 2: For the proposed synthetic circuit governed

by equations (2)-(10) with Y (t, uA) as a function of t and



uA, we have:
∂uA

Y (t, uA) > 0

for small enough t,

∂uA
Y (0, ua) = ∂ua

Ẏ (0, ua) = ∂ua
Ÿ (0, ua) = 0

and

∂ua

...
Y (0, ua) = (κ− β)t+a (TT − TR − TA).

Proof. From equation (8), we have that

Lf(x,p)Y (x(t)) = β(TT − TR − TA) + κTA − γY. (21)

Therefore:

Lf(x,p)(Lf(x,p)Y (x(t))) =

β(−(t+r (TT − TR − TA)(RT −DR − TR)− t−r TR − δ̄TR)

− (t+a (TT − TR − TA)(AT −DA − TA)− t−a TA − δ̄TA))

+ κ(t+a (TT − TR − TA)(AT −DA − TA)− t−a TA − δ̄TA)

− γ(β(TT − TR − TA) + κTA − γY ) (22)

Note that upon taking a third lie derivative, only the term
of the form (κ−β)(t+a (TT−TR−TA)(At)) will differentiate
to produce a term with uA in it. In particular, we have that

Lf(x,p)((κ− β)t+a (TT − TR − TA)(AT))
1

(κ− β)t+a

= AtLf(x,p)(TT − TR − TA) + (TT−TR−TA)Lf(x,p)(AT)

= ATLf(x,p)(TT−TR−TA) + (TT− TR−TA)(uA − δ̄AT).

We see that the expression has a term of the form (TT −
TR − TA)uA. Thus for (κ − β)t+a (TT − TR − TA) > 0, we
see that the third lie derivative is nondecreasing in uA. This
implies that for small times, Y will be nondecreasing in uA.
Indeed, we can write:

Y (t, uA) = Y (0) +
Ẏ (0)

1!
t1 +

Ÿ (0)

2!
t2 +

...
Y (0)

3!
t3 +O(t4)

(23)

=⇒ ∂uA
Y (t, uA) =

∂uA
(

...
Y (0))

3!
t3 +O(t4) > 0

for small enough t.

Figure 7 displays the flip in the behavior of the synthetic
circuit after an initial transient to exhibit the paradoxical
effect. The time series of Y (t) shows the existence of the
paradoxical effect, where the output level for uA = 0.1 is
higher than that of uA = 100. However, taking a closer look
at the data, the effect emerges after a finite duration of time.
This is shown by plotting the difference between the output
levels for uA = 0.1 and uA = 100 in Figure 7(b). We see that
t < to (where to > 0 is a threshold value of time for different
combinations of inputs, t0 ≈ 0.15 for uA = 0.1 and uA =
100), Y (uA = 100) > Y (uA = 0.1), i.e., an increase in the
activator increases the output protein levels and therefore no
paradoxical effect. Whereas for t > to, Y (uA = 100) <
Y (uA = 0.1), i.e., an increase in the activator decreases the
output protein levels and therefore exhibits the paradoxical
effect. Hence, the output protein levels of the circuit with
low input values (say uA = 0.1) start at t = 0 with a lower

Fig. 7. Transient dynamics is devoid of paradoxical effects. Time series of
the (a) concentration of the output protein Y (t) for uA = 0.1 and uA =
100, and (b) difference between the output levels of the protein Y (t, uA =
0.1) − Y (t, uA = 100), for Kta = 50. Generally, one may describe the
existence for initial crossing times as depicted in (c). The parameter values
are same as Figure 6

initial growth rate, cross the trajectory of an intermediate
input level (say uA = 100), before reaching a higher steady
state value than the intermediate one, as depicted in Figure
7(c). The parameters used for the numerical simulations are
somewhat arbitrary, therefore the magnitude of the effects
and the timescales could be expected to be different in
practice.

C. Increasing decoy sites increases the output

The paradoxical effect is also portrayed by varying the
levels of decoy sites in the system.

Theorem 3: The output Y of our synthetic circuit depends
on DT as follows:

dY

dDT
= C3 +

C4

Kta
(24)

where

C3 =

C5

Ktrγ
( κA
Kta

+ β) TT

O2
t

1 + DT

KdrO2
d
(1 + A

Kda
) + TT

KtrO2
t
(1 + A

Kta
)

C4 =
dA

dDT

TT

γO2
t

[
κ− β +

κR

Ktr

]
C5 =

R

KdrOd
−
[

RDT

KdrKdaO2
d

+
RDT

KtrKtaO2
t

]
dA

dDT

with dA
dDT

< 0 is provided in a separate technical report [12])
and A and R depend on DT.

Remark 2: Notice that C3 > 0 and C4 < 0. This means
that dY

dDT
is the sum of a positive term and a negative term.

In particular, for small values of Kta the negative second
term dominates, while for large values of Kta the positive
first term dominates, such that:

dY

dDT
> 0 for kta → ∞,

contradicting the expectation that increasing the competitor
sites (DT) decreases the output Y .



Proof. Differentiating equation (14) with respect to DT we
have

dY

dDT
=

1

γ

[
κA

Kta
+ β

]
dT

dDT
+

1

γ

κT

Kta

dA

dDT

Using a similar approach to Theorem 13, we compute dA
dDT

and dT
dDT

to get our output in the form (24).

Figure 6 (b) shows the variation of steady-state output
levels (Y ) as a function of decoy sites (DT) for different
values of Kta. For Kta = 0.1, we observe the expected
behavior of the output levels decreasing as the amount of
decoy sites increases. On the contrary, the behavior flips for
higher Kta values showing the exhibition of the paradoxical
effect. In the two-parameter bifurcation plots in Figure 6 (c),
we see that for high Kta value, the paradoxical affect is
observed for all values of uA. Increasing the amount of DT,
increases the output concentration. However, the value of DT

after which the system moves to an activated state depends
on the value of uA. Therefore, the onset of the effect can be
controlled using the activator levels. In the case of low Kta

value in Figure 6 (d), we see that increasing DT, decreases
the protein levels irrespective of the value of uA.

Next, we examine the onset of the paradoxical effect in a
similar manner as section III-B.

Theorem 4: Considering the proposed circuit, with Y is a
function of t and DT, i.e. Y (t,DT), we have:

∂DT
Y (0, DT) = ∂DT

Ẏ (0, DT) = ∂DT
Ÿ (0, DT) = 0.

Then,

∂DT

...
Y (t,DT) < 0 when At+a d

+
a (κ− β) > Rt+r d

+
r (β)

and

∂DT

...
Y (t,DT) > 0 when At+a d

+
a (κ− β) < Rt+r d

+
r (β)

for small enough t.
Proof. Similarly from Theorem 2, we can repeatedly take Lie
derivatives to find dependence on DT in the Taylor expansion
from equation (23). It follows from equations (21) and (22),
that the first and second order terms in equation (23) do not
have dependence on DT.

Looking at the second lie derivative, note that only differ-
entiating DA or DR would give terms involving DT . After
differentiating the third Lie derivative and only keeping track
of these terms, we will see a term of the form

DT(−(κ− β)t+a (TT − TR − TA)d
+
a (AT −DA − TA)+

βt+r (TT − TR − TA)d
+
r (RT −DR − TR))

= DT(−(κ− β)t+a d
+
a TA+ βt+r d

+
r TR) (25)

From this term we can observe that if

At+a d
+
a (κ− β) < Rt+r d

+
r (β)

Then for small time, increases in DT lead to increases in Y ,
and if

At+a d
+
a (κ− β) > Rt+r d

+
r (β)

for small times, increases in DT lead to decreases in Y .

IV. ADDITIONAL SYSTEM PROPERTIES

The following claims give some additional information
about the qualitative behavior of the system. In particular we
can rigorously prove that the system has bounded trajectories,
and that there exists a unique equilibrium.

Claim 1: The proposed synthetic circuit with the reaction
network given by equations (1) admits bounded trajectories.
Proof. Note we have conservation laws D+DA+DR = DT

and T + TA + TR = TT, which implies all these quantities
are bounded above by e = max(DT, TT). Similarly:

Ȧ = −δA+ ua − d+a AD − t+a AT + d−a DA + t−a TA

≤ −δA− d+a AD − t+a AT + (d−a + t−a )e+ ua.

Thus for large enough values of A, the above expression will
be negative, therefore A is bounded from above. The same
reasoning applies to R:

Ṙ = −δR+ uR − d+r RD − t+r RT + d−r DR + t−r TR

≤ −δR+ (d−r + t−r )e+ uR

In particular, the polytope described by the equations:

D +DA +DR = DT, T + TA + TR = TT,

A ≤ (d−a + t−a )e+ ua

δ
, R ≤ (d−r + t−r )e+ uR

δ
,

A,R,DA, DR, TA, TR, D, T ≥ 0

is invariant under our vector field, and thus our trajectories
are bounded.

Claim 2: The reaction network has an equilibrium.
Proof. From Claim 1, there is a compact and convex set of
values of our system species {TR, TA, DR, DA, Y, AT, RT}
that is closed under the time evolution of our system. By
Brouwer’s fixed point theorem for every t ≥ 0 we have the
time evolution ϕt has a fixed point xt. Take a sequence of
tn → 0, the sequence xtn has a limit point x. If x was not
an equilibrium, then for small t it would not be a fixed point
for ϕt, which is a contradiction. Thus x is an equilibrium of
our vector field.

This theorem applies to our system, and implies that our
system has at least one equilibrium. Next we will note that
this equilibrium must be in fact unique.

In order to know that an equilibrium is in fact the unique
equlibrium of the system, we can use the notion of injectivity.
We say the system is injective, as in [13], if for all possible
kinetic parameters the system ẋ = f(x, p) is such that
f(x, p) is an injective function, no matter the choice of p. If
this is true, it implies f(x, p) = 0 has at most one solution
(i.e., we have at most one equilibrium).

Claim 3: The proposed synthetic circuit is injective.
Proof. Using the conservation laws, TT = T + TA + TR

and DT = D +DA +DR, we can form the “extended rate
function” by simply replacing the dynamics for Ṫ and Ḋ
with our conservation laws. We can then take the determinant
of the Jacobian of this modified rate function and verify all
its terms are positive, which implies injectivity by Theorem



8.1 in [13]. Mathematica code for this computation can be
found in [12]. Inspection of the output confirms the Jacobian
is always nonzero and thus our system is injective.

V. DISCUSSION

Starting from a hypothesis concerning the role of off-
target binding in explaining paradoxical behaviors of acti-
vators and repressors observed experimentally in cancer cell
culture experiments, this paper proposed a synthetic biology
experiment to reproduce these behaviors in a controlled
situation. A mathematical analysis was used to identify
appropriate parameter regimes, and theoretical results were
obtained. Work is ongoing to build the appropriate synthetic
constructs and perform confirmatory experiments. Model-
driven experiments are being performed using CRISPRa as
the activator and CRISPRi as the repressor.
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