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Recovering biomolecular network
dynamics from single-cell omics data
requires three time points

Check for updates

ShuWang 1,2,3, MuhammadAli Al-Radhawi4, Douglas A. Lauffenburger 3 & EduardoD. Sontag 4

Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular
features, enabling data-driven studies of complex biological networks. However, these high-
throughput experimental techniques often cannot track individual cells over time, thus complicating
the understanding of dynamics such as time trajectories of cell states. These “dynamical phenotypes”
are key to understanding biological phenomena such as differentiation fates. We show by
mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-
points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the
network interaction matrix and associated dynamics. Moreover, we show through numerical
simulations that an interaction matrix can be accurately determined with three or more time-points
even in the presence of sampling andmeasurement noise typical of single-cell omics. Our results can
guide the design of single-cell omics time-course experiments, and provide a tool for data-driven
phase-space analysis.

In recent decades, experimental single-cell profiling techniques, such as
single-cell RNA sequencing1, multiplexed immunofluorescence2, or mass3

and multiparametric flow cytometry4, have enabled the simultaneous
measurement of biomolecular abundances for many (n = 101–105) biomo-
lecules—such as proteins or RNAs, in large numbers (N = 103–106) of cells.
These biomolecules constitute highly complex biological networks and their
changes over time may in principle be modeled by dynamical systems. The
time trajectories of these dynamical systems represent cell states and can be
interpreted as “dynamical phenotypes” that are fundamental to under-
standing biological phenomena at various time-scales, from cell cycles to
circadian rhythms to differentiation.

Past works have modeled biomolecular subnetworks by fitting dyna-
mical systems model parameters to other forms of data (e.g., low-
dimensional live-cell imagingorbulkpopulation-averaged expressiondata),
enabling predictions about how cell cycle timing can be biochemically
manipulated5, howdifferent cancer signalingpathways respond todrugs6, or
how gene regulatory networks affect cell-type differentiation7,8. However,
this standard approach of fitting pre-specified models to data is limited by
computational feasibility in higher dimensions, prior modeling assump-
tions, and data availability9. Single-cell omics have the potential to alleviate
the problem of data availability, but with the caveat that the data often
cannot provide single-cell time series due to the destructive sampling

typically involved in omics approaches, which also precludes the direct
application of powerful data-driven dynamical analysis tools like Dynamic
Mode Decomposition10. Thus, various computational approaches tailored
to single-cell omicsdata are being developed to aid dynamical analysis of the
biomolecular networks inside cells11, to understand how cell functions
might be driven by molecular interactions.

Newly developed methods for inferring single-cell omics dynamics
might be crudely categorized as follows: pseudotime11, which fits data using
one-dimensional shapes such as curves, trees, or graphs that are then
interpreted as “axes” of time; RNA velocity12, which estimates the instan-
taneous rates of change inmeasuredmRNA transcripts based onmodels of
the abundances of different post-transcriptional states of any given gene;
potential landscapes13, whichmodel the single-cell data distribution as being
generated by certain classes of dynamical systems such as gradient
dynamics; or even extensions of the traditional model-fitting strategies14.
Intriguingly, these methods often have the peculiar property that they infer
time-varying dynamics using as few as one timepoint of single-cell omics
data, i.e., without needing to explicitly use time information. Some notable
exceptions make explicit use of time information, including Waddington-
OT15, which relies on an optimal transport assumption to trace out
dynamics, PRESCIENT16, which still uses a gradient assumption but
incorporates time information when evaluating the goodness-of-fit of

1Donnelly Centre, University of Toronto, Toronto, ON, Canada. 2Molecular Genetics, University of Toronto, Toronto, ON, Canada. 3Department of Biological
Engineering, Massachusetts Institute of Technology, Cambridge,MA, USA. 4Departments of Bioengineering and Electrical & Computer Engineering, Northeastern
University, Boston, MA, USA. e-mail: lauffen@mit.edu; e.sontag@northeastern.edu

npj Systems Biology and Applications |           (2024) 10:97 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00424-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00424-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-024-00424-7&domain=pdf
http://orcid.org/0000-0002-1178-1143
http://orcid.org/0000-0002-1178-1143
http://orcid.org/0000-0002-1178-1143
http://orcid.org/0000-0002-1178-1143
http://orcid.org/0000-0002-1178-1143
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0002-0050-989X
http://orcid.org/0000-0001-8020-5783
http://orcid.org/0000-0001-8020-5783
http://orcid.org/0000-0001-8020-5783
http://orcid.org/0000-0001-8020-5783
http://orcid.org/0000-0001-8020-5783
mailto:lauffen@mit.edu
mailto:e.sontag@northeastern.edu
www.nature.com/npjsba


candidate potential functions, and Tempora17, which models dynamics at a
coarser level of transitions between cell states while leveraging pathway
enrichment information. The Dynamo framework18 can use different types
of time information, e.g. bymodeling themetabolic labeling and expression
kinetics of time-resolved single-cell RNA sequencing data to infer RNA
velocities. Overall, it is not always clear how the various assumptions across
various methods may bias the interpretation of single-cell dynamics, espe-
cially for methods that can accommodate data with only one timepoint.

Meanwhile, in the standard approach of inferring the equations of an
n-dimensional dynamical system _x ¼ FðxÞ from finding best-fits to time-
series data, one would expect at least O(n) time points to be necessary19

(depending on the assumed form of F(x)) to even have a unique best fit to
data. However, single-cell omics experiments are able to survey variation
(i.e., single-cell heterogeneity) at a given timepoint,which in general can also
provide rich information for identifying a best-fitting model, e.g., different
mechanisticmodels of biochemical processes can be indistinguishablewhen
formulated as deterministic dynamical systems, but become identifiable
upon modeling stochastic fluctuations20. Thus, it is currently unclear how
many time points of single-cell omics data are needed, and how one might
feasibly perform data-driven dynamical analysis, while avoiding strong
assumptions.

This work provides an initial answer to these questions. As a start, we
analyze the problem for linear dynamical systems _x ¼ Ax, which can
represent local approximations of nonlinear dynamical systems _x ¼ FðxÞ
around steady states xss. The entries of the matrix A represent the network
interactions. Through mathematical analysis, we prove that three time
points are theoretically necessary and sufficient to uniquely determine A
using the statistics of generic single-cell omics time-series data; we use
“generic” in the technical sense that all the exceptional instances, in which a
particular three-timepoint dataset is insufficient to uniquely determine A,
form a set ofmeasure zero, i.e., they have a “zero”-probability of occurring
amongst all possible datasets. Our results suggest that many existing
methods for dynamical analysis of single-cell omics data make, in some
sense, stronger assumptions than even linearity, given that they require only
one timepoint. Simultaneously, our results also show that an unbiased data-
driven analysis of n-dimensional dynamics is quite feasible, as the required
number of time points does not scale with the dimension n. Motivated by
our mathematical analysis, we use a method of moments to infer dynamics
from simulated data. We show that even in the presence of sampling noise
and measurement noise that is typical of single-cell omics data, linear
dynamics _x ¼ Aðx � xssÞ can still be estimated accurately using 3 or more
timepoints, up ton~20, uponwhich sample sizeN (i.e., numberof cells) and
measurement noise introduce substantial estimation error. Finally, we
address the effect of non-linearities or unobserved variables of a dynamical
systemon the interpretation of dynamicsA that can be estimated fromdata.

Results
Terminology and problem formulation
Consider a single-cell omics experiment. At a time point ti, a collection ofN
cells are sampled from a homogeneous cell population. For each of the
sampled cells, n features are measured, e.g, the levels of various proteins,
RNAs, histonemodifications, etc. Thus, the results are recorded in anN × n
measurement matrix.

Tomodel this process, we assume that each of the sampled cells is
running an identical dynamical system in an n-dimensional state
space, but with possibly different initial conditions at measurement
time ti, i.e., as might ideally be expected of an isogenic cell line cul-
tured in a well. Let the state of each cell be xt 2 Rn at time t ≥ 0. The
time evolution of each cell is described by the deterministic ODE
_x ¼ FðxÞ for some unknown function F and an initial condition x0 =
x(0). Since the population is homogeneous, random initial conditions
constitute the only source of variation among cells in our model.
Therefore, we assume that x0 is a random variable with a probability
density function f0(x). At time t, the state evolves from x0 to xt and the
probability density evolves to ft(x). Therefore, each row of the

measurement matrix is a sample of the random variable xti , where ti is
the measurement time. Using the measured data, we can estimate the
mean and covariance of xti . Hence, denote μt :¼ hxti ¼ E½xt �, and
Σt :¼ hðxt � μtÞðxðtÞ � μtÞTi :¼ E½ðxt � μtÞðxt � μtÞT �, which we
assume to be a positive-definite matrix.

Assume now that F is affine, with a steady state xss such that F(xss) = 0.
Then _x ¼ FðxÞ ¼ Aðx � xssÞ for some matrix A 2 Rn× n. Therefore, xt =
etA(x0 − xss) + xss. By linearity of expectation, we can describe the time
evolution of the mean and the covariance as follows:

μt ¼ etAðμ0 � xssÞ þ xss Σt ¼ etAΣ0ðetAÞ
T
:

Note that the time evolution of the mean μt depends on the steady-state xss,
while the corresponding equation for the covariance does not. This
motivates the following definition:

Definition 1 Let P,Q be symmetric positive definite matrices. Then (P,
Q) is said to be an ordered pair of covariancematriceswith respect to amatrix
A and time interval t > 0 iff Q ¼ etAP etA

� �T
. Similarly, an ordered pair of

vectors (ρ, θ) s.t. θ− xss = etA(ρ− xss) is said to be an ordered pair of means.
Hence, we are interested in finding the matrix A using the given pairs

(Σ0,Σt)≡ : (P,Q) and (μ0, μt)≡ : (ρ, θ) to solve forA. A single pair (P,Q), (ρ,
θ) will be insufficient to solve forA, so we consider cases withmultiple pairs
(Pi, Qi), (ρi, θi), in which the Pi’s and ρi’s are distinct over i, i.e., each pair
corresponds to a different initial distribution of x0 as characterized by their
first and second moments μ, Σ. This includes the common scenario of
measuring a single time series f 0ðxÞ; f t1 ðxÞ; f t2 ðxÞ; f t3 ðxÞ; . . . by taking
Pi ¼ Σti

, Qi ¼ Σtiþ1
, and ρi ¼ μti , θi ¼ μtiþ1

, but also includes the more
general scenario in which multiple time series are measured from different
distributions f0(x), g0(x),… of initial conditions.

Main theorems
We aim at finding the smallest number of pairs of means and cov-
ariance matrices that are needed to find the matrix A of a linear
system. We focus our attention on the generic case of a matrix A
which is invertible and diagonalizable, possibly with complex
eigenvalues. We will show that two generic pairs of means (ρi, θi) and
of covariances (Pi, Qi) are necessary and sufficient to uniquely
determine A and xss. Also, we will show that three generic pairs of
covariances (Pi, Qi) can be sufficient to uniquely determine A. In
either case, the geometric intuition might loosely be characterized as
follows: a single pair of covariances can show how the distribution is
stretched in various directions by the dynamics of A, but cannot
resolve how the distribution is rotated and/or reflected by the
dynamics; a second pair of covariances is able to resolve the rotation
except for various choices of reflections; finally, the information
contained in two pairs of means or a third pair of covariances is able
to resolve the ambiguous reflections. In what follows, we denote the
group of all orthogonal n × n matrices as On, and the set of positive
definite symmetric matrices as Sþ

n . Our main results are:
Theorem1For each positive number t> 0, letAn;t be the set of n×n real

matrices A such that, for every eigenvalue λj = aj+ ibj of A, it holds that ∣bj∣ <
π/t.

There is a generic (meaning open, dense, and with complement of
measure zero) subset S � Sþ

n ×Sþ
n ×Rn ×Rn with the following property.

Suppose given a matrix-vector-tuple (P1, P2, ρ1, ρ2) ∈ S, two matrices
A;B 2 An;t , and two vectors xA, xB, such that the following properties hold:

etAPiðetAÞ
T ¼ etBPiðetBÞ

T
for i ¼ 1; 2

and

etAðρi � xAÞ þ xA ¼ etBðρi � xBÞ þ xB for i ¼ 1; 2:

Then A = B and xA = xB. In other words, two matrix-vector pairs uniquely
determine A.
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Theorem2For each positive number t> 0, letBn;t be the set of n×n real
matrices A such that, for every eigenvalue λj = aj+ ibj of A, it holds that ∣bj∣ <
π/(2t).

There is a generic (meaning open, dense, and with complement of
measure zero) subset T � Sþ

n ×Sþ
n ×Sþ

n with the following property. Sup-
pose given a matrix-tuple (P1, P2, P3)∈ T, and two matrices A;B 2 Bn;t , the
following properties hold:

etAPiðetAÞ
T ¼ etBPiðetBÞ

T
for i ¼ 1; 2; 3:

Then A = B. In other words, three matrix pairs uniquely determine A.
We will show that the pairs of covariancematrices provide us with the

majority of the information on the transition matrix etA, and that subse-
quently the pairs of means can be used to determine etA from amongst a
finite set of possibilities. To determine A from etA using matrix logarithms,
wewill show that sufficiently small t relative to the dynamics ofA enables us
to determine A uniquely, in close resemblance of the Shannon–Nyquist
Theorem, but that time-series data with varying time intervals can effec-
tively remove the small-t constraint.

Remark1 It is important that the covariances are assumed to be positive
definite as opposed to positive semi-definite, since any subspace along which
there is zero variance provides less information about how the dynamics
stretch the distribution of cell states. For example, in the extreme limit for
which the covariances are simply the zero matrix, one would only have
information on how the mean value is shifted by the dynamics, and O(n)
time-points would be needed to solve for etA as opposed to three time-points.

In what follows, we will show that the first pair of covariances roughly
determines etA up to rotations, that the second pair of covariances deter-
mines etA up to reflections, and that the two means can then determine etA

uniquely.

First pair (P1, Q1) gives etA up to an orthogonal matrix R
We introduce the notations V ≡ etA, and Qi ¼ etAPiðetAÞT , giving:

Q1 ¼ VP1V
T : ð1Þ

As P1;Q1 2 Sþ
n , they each have a uniquely defined square-root that is

also positive definite, P1=2
i and Q1=2

i , respectively. Hence, we state the
following result.

Theorem 3 Given a nonsingular V 2 Rn× n, and P1;Q1 2 Sþ
n , the

following statements are equivalent:
1. Q1 = VP1V

T

2. There exists some R 2 On such that V ¼ Q1=2
1 RP�1=2

1 .

Proof To show property 2 implies property 1, we plug V ¼
Q1=2

1 RP�1=2
1 into the RHS of Eq. (1):

Q1 ¼ ðQ1=2
1 RP�1=2

1 ÞP1ðP�1=2
1 RTQ1=2

1 Þ
¼ ðQ1=2

1 RP�1=2
1 ÞðP1=2

1 Þ2ðP�1=2
1 RTQ1=2

1 Þ
¼ Q1=2

1 RRTQ1=2
1

¼ Q1=2
1 Q1=2

1 ¼ Q1:

To show property 1 implies property 2, we rearrange Eq. (1) after taking
square roots:

Q1=2
1 Q1=2

1 ¼ VP1=2
1 P1=2

1 VT

I ¼ Q�1=2
1 VP1=2

1 P1=2
1 VTQ�1=2

1

I ¼ ðQ�1=2
1 VP1=2

1 ÞðQ�1=2
1 VP1=2

1 ÞT ;

i.e., R � Q�1=2
1 VP1=2

1 2 On, which rearranges to V ¼ Q1=2
1 RP�1=2

1 .□
Thus, a single pair of covariance matrices only specifies etA ¼

Q1=2
1 RP�1=2

1 up to rotations and reflections represented by R 2 On.

Second pair (P2, Q2) gives etA up to a diagonal sign matrix Θ
Assume that we are given two pairs of covariancematrices (P2,Q2), (P1,Q1)
where P1 ≠ P2. Using Theorem 3, the first pair determines the transition
matrixV up to a factorR 2 On. The next lemma shows that the second pair
provides additional constraints on R, but also that there are constraints on
(P2, Q2) if a solution V is to exist:

Lemma 4 Given a nonsingular V 2 Rn× n, and positive definite pairs
(P1, Q1) and (P2, Q2), define

M :¼ Q�1=2
1 Q2Q

�1=2
1 and N :¼ P�1=2

1 P2P
�1=2
1 :

Then, then following statements are equivalent:
1. The following equalities hold:

Q1 ¼ VP1V
T ; Q2 ¼ VP2V

T : ð2Þ

2. V ¼ Q1=2
1 RP�1=2

1 , for some R 2 On such that MR = RN.

Proof Suppose that property 1 is true, so that Eq. (2) holds. It follows
fromTheorem3 that there is someR 2 On such thatV ¼ Q1=2

1 RP�1=2
1 . For

this R, Q2 = VP2V
T if and only if MR = RN, because of the following

equivalences:

Q2 ¼ VP2V
T , Q2 ¼ ðQ1=2

1 RP�1=2
1 ÞP2ðP�1=2

1 RTQ1=2
1 Þ

, ðQ�1=2
1 Q2Q

�1=2
1 Þ ¼ RðP�1=2

1 P2P
�1=2
1 ÞRT

, M ¼ RNRT

, MR ¼ RN:

Conversely, suppose that property 2 is true, for some R. Following the
above equivalences backwards, we conclude thatQ2 =VP2V

T, so property 1
holds.□

Observe that, in the previous lemma, the (symmetric and positive-
definite) matrices M and N are similar (with an orthogonal similarity
transformation R), and thus M and N have the same eigenvalues. The
following corollary is clear from the proof and is stated for future reference:

Corollary 5 Let M, N be defined as in Lemma 4. Then there exist
UN ;UM 2 On and a unique diagonal matrix Λ 2 Rn with the entries on
the diagonal sorted in descending order such that

M ¼ UMΛU
T
M ;N ¼ UNΛU

T
N : ð3Þ

We already pointed out thatM and N have the same eigenvalues.
We next assume that these eigenvalues are distinct. We will show in a
later section that this assumption holds generically.We are now ready
to state the main result in this subsection. We will say that an n × n
matrix Θ is a signature matrix if it is diagonal and Θ2 = I, that is, its
diagonal entries are+ 1 or− 1. Every signature matrix is orthogonal,
since ΘTΘ = Θ2 = I.

Theorem 6Given a nonsingular V 2 Rn× n, and positive definite pairs
(P1, Q1) and (P2, Q2), define

M :¼ Q�1=2
1 Q2Q

�1=2
1 and N :¼ P�1=2

1 P2P
�1=2
1 :

Suppose that N has distinct eigenvalues, and M, N are orthogonally similar.
Then, then following statements are equivalent:
1. The following equalities hold:

Q1 ¼ VP1V
T ; Q2 ¼ VP2V

T : ð4Þ

2. There exist orthogonal matrices UM and UN and a signature matrix Θ
such that

V ¼ Q1=2
1 UMΘU

T
NP

�1=2
1 : ð5Þ
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Proof Suppose that property 1 holds. By Lemma 4, we may pick some
R 2 On such thatMR=RN, andwith thisRwe have thatV ¼ Q1=2

1 RP�1=2
1 .

We can then pick UM, UN, and Λ as in Corollary 5. DefineΘ :¼ UT
MRUN ,

whichmeans thatR ¼ UMΘU
T
N . Substituting intoV ¼ Q1=2

1 RP�1=2
1 ,weget

the desired equality V ¼ Q1=2
1 UMΘU

T
NP

�1=2
1 Thus, we only need to show

that Θ is a signature matrix. The matrix Θ is orthogonal, since orthogonal
matrices form a group undermatrix multiplication and each ofUT

M , R, and
UN is orthogonal. Observe that

R ¼ RN , ðUMΛU
T
MÞR ¼ RðUNΛU

T
N Þ ,

ΛðUT
MRUN Þ ¼ ðUT

MRUN ÞΛ , ΛΘ ¼ ΘΛ:
ð6Þ

Since we know thatMR = RN, the last equivalence shows thatΛ commutes
withΘ. AlsoN has distinct eigenvalues, so it follows thatΛ, which is similar
toN, has distinct eigenvalues as well. It is an easy exercise in linear algebra to
show that an orthogonalmatrix that commuteswith a diagonal nonsingular
matrixmust be diagonal. ThusΘ is not only orthogonal but is also diagonal,
and therefore I=ΘΘT=Θ2, showing thatΘ is a signaturematrix as claimed.

Conversely, suppose that property 2 holds. Define R :¼ UMΘU
T
N ,

which is an orthogonalmatrix. SinceM andN are orthogonally similar, they
share eigenvalues that can be arranged in a diagonal matrixΛ, which would
commute with the signature matrix Θ. Following Eq. (6) in reverse, one
finds thatMR=RN. Thus, by the implication (2)⇒ (1) in Lemma4,wehave
that Q1 = VP1V

T and Q2 = VP2V
T.□

Thus, a secondpair of covariancematrices specifies 2npossiblematrices
etA ¼ Q1=2

1 UMΘU
T
NP

�1=2
1 , for all the possible signature matrices Θ. Intui-

tively, this signature matrix compensates for the arbitrary choice of sign on
the basis UM relative to UN.

Remark 2Without assumingΛ has distinct eigenvalues, there are other
non-diagonal solutions that satisfy Θ 2 On and ΛΘ = ΘΛ. Hence, the
number of possible solutions would be much larger than 2n.

Two further pairs of means (ρ1, θ1) and (ρ2, θ2) determine etA

and xss
Using the first moments of the distributions at different times, we can find
additional constraints on etA, provided the means ρ1, ρ2, θ1, θ2 are con-
strained so that a solution for etA exists.

Lemma 7 Given a nonsingular V 2 Rn× n and xss 2 Rn, and quad-
ruples ðP1;Q1; ρ1; θ1Þ; ðP2;Q2; ρ2; θ2Þ 2 Sþ

n ×Sþ
n ×Rn ×Rn, and for UM,

UN as defined in Corollary 5, define:

v! :¼ UT
MQ

�1=2
1 ðθ1 � θ2Þ and w! :¼ UT

NP
�1=2
1 ðρ1 � ρ2Þ:

Assume that N has distinct eigenvalues, andM,N are orthogonally similar as
in Theorem 6. Then, the following statements are equivalent:
1. The following equalities hold:

Q1 ¼ VP1V
T ; Q2 ¼ VP2V

T ; ð7Þ

θ1 ¼ Vðρ1 � xssÞ þ xss; θ2 ¼ Vðρ2 � xssÞ þ xss: ð8Þ

2. For some signature matrix Θ, such that v!¼ Θw!:

V ¼ Q1=2UMΘU
T
NP

�1=2
1 ð9Þ

xss ¼ ðV � IÞ�1ðVρ1 � θ1Þ: ð10Þ

Proof Suppose that property 1 holds. We rearrange the equations for
θ1, θ2 and subtract them from each other:

θ1 � xss ¼ Vðρ1 � xssÞ; θ2 � xss ¼ Vðρ2 � xssÞ;
) θ1 � θ2 ¼ Vðρ1 � ρ2Þ

From Theorem 6, we know that V ¼ Q1=2
1 UMΘU

T
NP

�1=2
1 , for some

signature matrix Θ, so:

θ1 � θ2 ¼ Vðρ1 � ρ2Þ
θ1 � θ2 ¼ Q1=2

1 UMΘU
T
NP

�1=2
1 ðρ1 � ρ2Þ

UT
MQ

�1=2
1 ðθ1 � θ2Þ ¼ ΘUT

NP
�1=2
1 ðρ1 � ρ2Þ:

ð11Þ

Since we defined v! :¼ UT
MQ

�1=2
1 ðθ1 � θ2Þ and w! :¼ UT

NP
�1=2
1

ðρ1 � ρ2Þ 2 Rn, we get v!¼ Θw!.
To solve for xss, we simply re-arrange the expression for θ1:

θ1 ¼ Vðρ1 � xssÞ þ xss
Vρ1 � θ1 ¼ Vxss � xss

ðV � IÞ�1ðVρ1 � θ1Þ ¼ xss

Conversely, suppose that property 2 holds. By Theorem 6, we know
that Q1 = VP1V

T and Q2 = VP2V
T. By simple re-arrangement of the

expression for xss, we arrive back at θ1 = V(ρ1− xss)+ xss. Furthermore, by
following Equations (11) in reverse, we arrive back at θ1− θ2 =V(ρ1− ρ2).
Wemay then subtract the expression for θ1− θ2 from the expression of θ1 as
follows:

θ1 � ðθ1 � θ2Þ ¼ Vðρ1 � xssÞ þ xss � ðVρ1 � Vρ2Þ
θ2 ¼ Vðρ2 � xssÞ þ xss;

completing statement 1.□
Provided the existence constraint from the above lemma,wemay solve

for etA and xss:
Theorem 8 Given a nonsingular V 2 Rn× n and xss 2 Rn, and

quadruples ðP1;Q1; ρ1; θ1Þ; ðP2;Q2; ρ2; θ2Þ 2 Sþ
n ×Sþ

n ×Rn ×Rn, and for
UM, UN as defined in Corollary 5, define:

v! :¼ UT
MQ

�1=2
1 ðθ1 � θ2Þ and w! :¼ UT

NP
�1=2
1 ðρ1 � ρ2Þ:

Assume vi ≠ 0 andwi ≠ 0, ∀ i, and that v!¼ Θw! for some signature matrix
Θ. Also assume that M, N are orthogonally similar, and that N has distinct
eigenvalues, as in Theorem 6. Then, then following statements are equivalent:
1. The following equalities hold:

Q1 ¼ VP1V
T ; Q2 ¼ VP2V

T ; ð12Þ

θ1 ¼ Vðρ1 � xssÞ þ xss; θ2 ¼ Vðρ2 � xssÞ þ xss: ð13Þ

2. There exists a signaturematrixD given byDii :¼ sgnðvi=wiÞ, such that:

V ¼ Q1=2
1 UMDUT

NP
�1=2
1 : ð14Þ

xss ¼ ðV � IÞ�1ðVρ1 � θ1Þ: ð15Þ

Proof Suppose that property 1 holds. By Lemma 7, we know that
V ¼ Q1=2UMΘU

T
NP

�1=2
1 , and that v!¼ Θ w!. Since Θ is a signature

matrix, then vi =Θiiwi, and so vi andwi only differ by a sign.Wemay find a
solutionD forΘ by simply takingDii :¼ sgnðvi=wiÞ, choosing the notation
sgnðÞ to emphasize that vi/wi = ± 1.Also by Lemma 7, we know that xss = (V
−I)−1(Vρ1 − θ1).

Conversely, suppose that property 2 holds. Since v!¼ Θ w! for some
signature matrix Θ, the definition of D implies that Θ ¼ D. Thus, by the
implication (2)⇒ (1) in Lemma 7, we recover statement 1.□

There is a unique solution forΘ so long as vi,wi≠ 0 ∀ i, whichwe show
in a later section is generically true. Thus, V = etA and xss are uniquely
determined from two pairs of means and covariances.
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Three pairs of covariances (Pi, Qi) can determine ± etA

We have established that two pairs of covariance matrices alone are not
enough to determine etA uniquely, due to ambiguity in “reflections” repre-
sentedby a signaturematrixΘ. A thirdpair of covariancematrices (P3,Q3) is
enough to resolve this ambiguity, provided a solution etA exists:

Lemma 9 Given a nonsingular V 2 Rn× n, and positive definite pairs
(P1,Q1), (P2,Q2), (P3,Q3), letUM,UNbe definedas inCorollary 5, anddefine:

X :¼ UT
NP

�1=2
1 P3P

�1=2
1 UN and Y :¼ UT

MQ
�1=2
1 Q3Q

�1=2
1 UM :

Assume that N has distinct eigenvalues, andM,N are orthogonally similar as
in Theorem 6. Then, the following statements are equivalent:
1. The following equalities hold:

Q1 ¼ VP1V
T ; Q2 ¼ VP2V

T ; Q3 ¼ VP3V
T ð16Þ

2. For some signature matrix Θ;V ¼ Q1=2
1 UMΘU

T
NP

�1=2
1 , such that

Y = ΘXΘ.

Proof Suppose that property 1 holds. We substitute the previous
solution forV fromTheorem6 into the analogous equation toEq. (1) for the
third pair:

Q3 ¼ VP3V
T , Q3 ¼ Q1=2

1 UMΘU
T
NP

�1=2
1 P3ðQ1=2

1 UMΘU
T
NP

�1=2
1 ÞT

, UT
MQ

�1=2
1 Q3Q

�1=2
1 UM ¼ ΘðUT

NP
�1=2
1 P3P

�1=2
1 UN ÞΘ;

, Y ¼ ΘXΘ:

ð17Þ
Conversely, suppose that property 2 holds. Since Θ is a signature

matrix, andM and N are orthogonally similar, then Q1 = VP1V
T and Q2 =

VP2V
T by Theorem 6. By following Equations (17) in reverse, we get Q3 =

VP3V
T, completing statement 1.□
Provided the existence constraint from the above lemma,wemay solve

for etA:
Theorem 10 Given a nonsingular V 2 Rn× n, and positive definite

pairs (P1,Q1), (P2,Q2), (P3,Q3), let UM,UN be defined as in Corollary 5, and
define

X :¼ UT
NP

�1=2
1 P3P

�1=2
1 UN and Y :¼ UT

MQ
�1=2
1 Q3Q

�1=2
1 UM :

Assume that the node-edge graph GX associated to X, treating each non-zero
entry [X]ij as an edge weight between the n nodes, has a single connected
component, and that Y = ΘXΘ for some signature matrix Θ. Also, assume
that N has distinct eigenvalues, and M, N are orthogonally similar as in
Theorem 6. Then, the following statements are equivalent:
1. The following equalities hold:

Q1 ¼ VP1V
T ; Q2 ¼ VP2V

T ; Q3 ¼ VP3V
T ð18Þ

2. There exist two signature matrices, ±S, given by S11 ¼ 1 and the
remaining diagonal entriesSii ¼ sgnð½Y �ij=½X�ijÞ; i ¼ 2; ::; n; i≠ j, such

that either V ¼ þQ1=2
1 UMSUT

NP
�1=2
1 or V ¼ �Q1=2

1 UMSUT
NP

�1=2
1 .

Proof Suppose that property 1 holds. By Lemma 9, we know that for
some signaturematrixΘ;V ¼ Q1=2UMΘU

T
NP

�1=2
1 and thatY =ΘXΘ. The

last equation takes the following form entrywise:

yij ¼ ΘiΘjxij ð19Þ

forY= yij,X= xij, and the diagonal entriesΘi=± 1 ofΘ. Thus, from the sign
of yij/xij (provided that xij ≠ 0), we may determine the relative sign of Θi to
Θj. Starting by assumingΘ1 = 1, we can determineΘj for all neighboring j’th
nodes of node 1 on GX . Similarly, since GX has a single connected

component, onemay determine the signs ofΘj ∀ j by following the edges of
GX . Hence, we define S to be the diagonal matrix with non-zero entries
S11 ¼ 1, and Sii ¼ sgnðyij=xijÞ, for i≥2 and any j ≠ i, using the notation
sgnðÞ to emphasize that yij/xij = ± 1. ThenΘ ¼ ±S are the two solutions to
Y = ΘXΘ, giving the final solutions V ¼ ±Q1=2

1 UMSUT
NP

�1=2
1 .

Conversely, suppose that property 2 holds. Since we assume that Y =
ΘXΘ for some signature matrix Θ, the definitions of ±S imply that
Θ ¼ ±S. Thus, by implication (2) ⇒ (1) in Lemma 9, we recover the
equalities of statement 1.□

Wewill show in a later section it is generically true that GX has a single
connected component.

Remark 3 Note that determining V up to a sign is the best one can do
using covariances {Pi, Qi}, since:

Pi ¼ VQiV
T ¼ ð�VÞQið�VT Þ: ð20Þ

Thus, three pairs (Pi, Qi) determine V up to a sign, and additional pairs
provide no further constraints on V.

Genericity of assumptions on (Pi, Qi) and (ρi, θi)
We first show three lemmas that will be used in proving genericity, noting
that we will use “analytic” or “algebraic” sets to mean sets with positive
codimension. The first lemma is, of course, well-known.

Lemma11The set Z1 � Sþ
n ofmatrices with repeated eigenvalues is an

algebraic set.
Proof Let πB be the characteristic polynomial of B. The discriminant of

πB (the resultantofπB and itsderivativeπ0
B) for amatrixB∈Z1with repeated

eigenvalues will be zero. The coefficients of πB are polynomial functions of
the entries bij of B. Thus, Z1 is an algebraic set.□

Lemma 12 The uniquely defined positive definite square root P1/2 of a
positive definite matrix P 2 Sþ

n has entries that are analytic functions of the
entries of P.

Proof This follows by applying the tools of holomorphic functional
calculus, which insure (for bounded operators in a Banach space) that there
is an extension of an analytic function f(z) to a matrix f(P) provided that f is
analytic in an open neighborhood of the spectrum of P. The function

ffiffiffi
z

p
is

analytic on the positive real axis z > 0, and P has all eigenvalues in this set, soffiffiffi
P

p
is a special case.
An alternative proof of analyticity is by applying the Implicit Function

Theorem to the map F:Q↦Q2. The differential of this mapping at a point
Q0 is given by the linear operatorL:Q↦Q0Q+QQ0, and the eigenvalues of
this operator are the n2 pairwise sums of eigenvalues of Q0. For Q0 positive
definite, these pairwise sums are always positive and hence nonzero.
Therefore L is onto and thus F is nonsingular at Q0, which implies that the
solution of F(Q) = P is analytic on P.□

Lemma 13 Given a positive definite matrix B with distinct eigenvalues,
and its eigendecomposition B ¼ UBΛBU

T
B , the entries of UB can be chosen as

analytic functions of the entries of B.
Proof For B a positive definite matrix with distinct eigenvalues, let

λ1;B > λ2;B > . . . > λn;B

be its (real) eigenvalues, ordered from largest to smallest. In general, if a
polynomial f has a zero of multiplicity one at a point a, then f 0ðaÞ≠0, since
f(x) = (x − a)g(x) with g(a) ≠ 0, and f 0ðaÞ ¼ gðaÞ þ ða� aÞg 0ðaÞ ¼ gðaÞ.
This implies that the functions λi,B are analytic on B, as verified by applying
the implicit mapping theorem to the implicit equation πB(z) = 0 and using
that πB(λi,B) = 0 and π0

Bðλi;BÞ≠ 0.
Let Z2 be the subset ofS

þ
n consisting of matrices B for which, for some

i = 1, …, n, the determinant of the submatrix Bi formed by the last n− 1
columns of B− λi,BI has rank n− 2. Since B has rank n− 1, the rank of Bi
can only ben− 1 orn− 2. Thus asking thatBihave rankn− 2 is equivalent
to asking that all the (n− 1) × (n− 1) minors of Bi should be zero. The
complement ofZ2 consists ofmatrices forwhich allBihave full column rank
n− 1. Notice that, since minors are polynomials on the entries of B and the
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λi,B are analytic functions on the entries of B, the setZ2 is an analytic variety.
Wewill letP denote the complement of the analytic varietyZ1∪Z2, forZ1 as
defined in Lemma11. This is a generic subset ofSþ

n , in the sense that it is the
complement of an analytic variety, and therefore has measure zero and is
also open dense. Any matrix B 2 P admits an orthogonal decomposition
B ¼ UBΛBU

T
B , where

ΛB :¼ diag ðλ1;B; λ2;B; . . . ; λn; BÞ:

The columns of the matrix UB are an ordered set u1,B, u2,B, …, un,B of
orthogonal eigenvectors corresponding to the respective λi,B. These vectors
ui,B are onlyuniqueup tomultiplicationby±1 (because they aremultiples of
each other and have unit norm). Notwithstanding this non-uniquness, we
show next that one can pick the eigenvectors u1,B, u2,B,…, un,B as analytic
functions of B.

To do so, we will first pick eigenvectors that are orthogonal to each
other but not yet of unit norm, in fact with first coordinate equal to 1.

Fix any i and consider the equation (B− λi,BI)u = 0. A vector u of the
form ð1; rT ÞT solves (B− λi,BI)u=0 if and only if c+Bir=0, andBihas rank
n− 1 because B 2 P. This means that r ¼ �B]

i c, where B
]
i is the Moore-

penrose pseudoinverse of Bi;B
]
i ¼ ðBT

i BiÞ�1
BT
i , which is an analytic func-

tion of the entries ofBi, andhence ofB. Finally, we can obtain unit vectors by
normalizing u, which preserves analyticity.□

We now show that various assumptions used in the proofs of previous
theorems are generic.

Genericity: N has distinct eigenvalues
In Theorem 6, we assume that a matrix N :¼ P�1=2

1 P2P
�1=2
1 has distinct

eigenvalues, for Pi 2 Sþ
n .

Lemma 14 The set U of matrix-tuples ðP1; P2Þ 2 Sþ
n ×Sþ

n for which
N ¼ P�1=2

1 P2P
�1=2
1 has distinct eigenvalues is open, dense, and has com-

plement of measure zero.
ProofThe set ofmatricesN 2 Sþ

n with distinct eigenvalues constitutes
anopen subset ofSþ

n that is the complementof a closed algebraic setZ1 from
Lemma11. Furthermore, the entriesnijofN are polynomials of the entries of
P�1=2
1 and P2, and the entries of P

�1=2
1 are analytic functions of the entries of

P1 by Lemma 12. Thus, since polynomial functions of analytic functions are
analytic, the set U of matrix-tuples ðP1; P2Þ 2 Sþ

n ×Sþ
n that produce a

matrixNwith distinct eigenvalues is generic because it is the complement of
an analytic set (which has measure zero).□

Genericity: there is a unique solution to vi = Θiiwi

In Theorem 8, we assume that a vector w! :¼ UT
NP

�1=2
1 ðρ1 � ρ2Þ has no

zero entries, for UN an eigenvector basis of a positive definite matrix N ¼
P�1=2
1 P2P

�1=2 with distinct eigenvalues, P1 2 Sþ
n , and ρi 2 Rn.

Lemma 15 The set V of matrix-vector-tuples ðP1; P2; ρ1; ρ2Þ 2
Sþ
n ×Sþ

n ×Rn ×Rn forwhich the entrieswi of w
!are nonzero is open, dense,

and has complement of measure zero.
Proof The entrieswi are polynomials in terms of the respective entries

ofUN ; P
�1=2
1 ; ρ1, and ρ2. The entries of P

�1=2
1 are analytic functions of P1 by

Lemma 12. The entries of UN are analytic functions of N ¼ P�1=2
1 P2P

�1=2
1

by Lemma 13, and therefore also analytic functions of the entries of P1 and
P2.Hence, the entrieswi are analytic functionsof (P1,P2,ρ1,ρ2). The vectorw
has a zero entry on the union of the n analytic sets defined by wi = 0. Thus,
take V to be the complement of these analytic sets.□

Genericity: GX has one connected component
InTheorem10,we assume that amatrixX :¼ UT

NP
�1=2
1 P3P

�1=2
1 UN has the

property that its associated node-edge graph GX has a single connected
component. We will show that the special case in which GX is fully con-
nected (i.e., X has no zero entries) is already generic.

Lemma 16 The set W of matrix-tuples ðP1; P2; P3Þ 2 Sþ
n ×Sþ

n ×Sþ
n

for which all the entries of X are nonzero is open, dense, and has complement
of measure zero.

Proof The entries xij of X are polynomials in terms of the respective
entries ofUN ; P

�1=2
1 , andP3. The entries ofP

�1=2
1 are analytic functions ofP1

by Lemma 12. The entries of UN are analytic functions of N ¼
P�1=2
1 P2P

�1=2
1 by Lemma 13, and therefore also analytic functions of the

entries of P1 and P2. Hence, the entries xij are analytic functions of (P1,
P2, P3).

For a given simple node-edge graph G on n nodes with adjacency
matrix AG, define the analytic set:

VG :¼ fðP1; P2; P3Þ 2 Sþ
n ×Sþ

n ×Sþ
n j xij ¼ 0 8 i; j s:t: AGij ¼ 0g

There are a finite number K of graphs Gk with n nodes and more than
one connected component. Thus,

ZG :¼ ∪ K
k VGk

is the closed analytic set of all (P1, P2, P3) that result in a graph with more
than one connected component. The complement ðSþ

n ×Sþ
n ×Sþ

n Þ n ZG of
(P1, P2, P3)’s resulting in one connected component is therefore open with
complement of measure zero.□

Determining A given V = etA or ± V
In theprevious sections,wehave shownhow todetermineVor±Vuniquely.
Given a unique V = etA, we can then solve forA up to a discrete equivalence
class: if some of V’s eigenvalues are complex, the matrix logarithm logðVÞ
wouldbemulti-valued21. Concretely,wediagonalizeV=WDVW

−1 (which is
diagonalizable by the assumption that A is diagonalizable), and take the
logarithms of its eigenvalues to solve for A, then:

A ¼ 1
t
W logðDV ÞW�1 ð21Þ

where each eigenvalue zj = rje
iθ along the diagonal DV has multiple loga-

rithms logðrjÞ þ iðθ þ 2πkÞ for k 2 Z. Thus, we may solve up to an

equivalence class of linear dynamical systems fA
k
!g, for k

!2 Zn denoting

thepossible imaginary shifts in theperiodof the eigenvalues.Allmembers of
fA

k
!g share common eigenvectors and real-parts of eigenvalues, which can

often be represented by the uniquely-defined principal logarithm LogðVÞ in
Ap ¼ 1

t Log ðVÞ with imaginary components restricted to [− π, π].

If we assume for a given t > 0, it is known thatA belongs to the setAn;t
of matrices with eigenvalues λj = aj + ibj for which ∣bj∣ < π/t (i.e., the
oscillatory components of solutions x(t) to _x ¼ Ax have periods larger than
the time interval t), then we can uniquely identify A as A ¼ 1

t Log ðVÞ.
Lemma 17 Suppose A 2 An;t . Given V ¼ etA;A ¼ 1

t Log ðVÞ.
ProofThe j’th eigenvalue of logðVÞ can be any of lj = taj+ i(tbj+ 2πk)

for k 2 Z, foraj, bj the corresponding real and imaginary components ofA’s
eigenvalue λj. Suppose that ∣bj∣ < π/t, i.e.,

�π < tbj < π; 8j:

Then the principal logarithm Log(V) corresponds to the choice of k = 0, ∀ j,
and Log(V) = tA.□

Remark 4 The requirement on the time interval coincides with that of
the Shannon–Nyquist Theorem22, but our result differs since there is no single
signal x(t) being measured, and even hypothetical solutions x(t) fulfilling
_x ¼ Ax contain infinitely high frequencies from the real exponential com-
ponents of x(t).

In the case thatweonly identify±V, ifwedefine the setBn;t of realn×n
matrices such that ∣bj∣ < π/(2t), ∀ j, then only one of Log(± V) will belong
to Bn;t .

Lemma 18 Suppose A 2 Bn;t . Given V = etA and �V;A ¼ 1
t Log ðVÞ

and 1
t Log ð�VÞ=2Bn;t .
Proof Since Bn;t � An;t , then by Lemma 17, A ¼ 1

t Log ðVÞ.
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Given thatV canbe diagonalized asV=WDVW
−1 with eigenvalues zj=

xj+ iyj, then− V =W(−DV)W
−1 with corresponding eigenvalues− (xi+

iyj) that have an additional imaginary phase of π. Thus, for λj = taj+ itbj the
eigenvalues of Log(V), the eigenvalues of 1t Log ð�VÞ are:

lj ¼ aj þ iðbj ± π=tÞ:

Supposing that A 2 Bn;t , i.e., ∣bj∣ < π/(2t), then either:

�π=ð2tÞ þ π=t < bj þ π=t < π=ð2tÞ þ π=t or � π=ð2tÞ � π=t < bj � π=t < π=ð2tÞ � π=t

) π=ð2tÞ < bj þ π=t < 3π=ð2tÞ or � 3π=ð2tÞ < bj � π=t < π=ð2tÞ:

which both imply that ∣bj ± π/t∣ > π/(2t), and that therefore
1
t Log ð�VÞ=2Bn;t.□

Remark5 If even one ofV’s eigenvalues is real, and positive, and distinct
fromV’sother eigenvalues, then logð�VÞ cannot be a realmatrix because−V
would have a real, negative eigenvalue distinct from the other eigenvalues of
−V21. In such cases, one can identify V and then apply Lemma 17. Thus,
Lemma 18 is only used when all eigenvalues of V are complex.

Finally, we note that onemight also consider solving forA, givenV, by
making use of data for which the time intervals vary. This possibility is
motivated by:

Lemma 19 For a diagonalizable and invertible A, suppose etB = etA, for
some t > 0 andA≠B.Given s > 0, esA≠ esB for generic s 2 R>0, i.e., when s/t is
irrational.

Proof If etB = etA, then each eigenvalue λB of B differs from some
eigenvalue λA of A by:

λB � λA ¼ 2πk1
t

; for k1 2 Z:

In order for esA = esB, their eigenvalues must be the same. The eigenvalues of
esA and esB will be esλA and esλB , and can only be equal if:

λB � λA ¼ 2πk2
s

; for k2 2 Z:

Thus, esA = esB only if:

2πk1
s

¼ 2πk2
t

, s
t
¼ k1

k2
; for k1; k2 2 Z:

Since esA= esB requires s/t to be rational, and the rationals havemeasure zero
inR>0, generically e

sA ≠ esB.□
For example, suppose that after collecting data in an experiment with

three time points at intervals t, one has determined that the trueA 2 fA
k
!g,

for which etA = etB for any B 2 fA
k
!g. If this experiment is repeated,

changing only the interval to s so that s/t is irrational, one may determine
Vs= e

sA. By the above lemma, only the trueA 2 fA
k
!gwill have theproperty

that esA = Vs, since e
sB ≠ esA = Vs for all other B 2 fA

k
!g. It is possible that

fewer time points (at different intervals) are needed to uniquely determine
A, but we do not investigate this further here.

Remark 6 In practice, data will always contain noise from finite sam-
pling or measurement noise, and so it is likely difficult to distinguish between
the statistical differences of data taken at intervals s, t for s/t irrational versus
rational, since the rationals are dense. Still, uneven intervals clearly help
eliminate possible choices for A: whereas with a single interval t, we must
assume, for example, that ∣bj∣ < π/t, if s/t = p/q for p; q 2 Z, then for a: =
lcm(p,q) the least commonmultiple of p andq,we can loosen the requirement
to ∣bj∣ < aπ/t.

Proof of main theorems
To prove Theorem 1, we choose the generic set S to be ðU ×Rn ×RnÞ \ V
from Lemmas 14 and 15. By Theorem 8, we determine V = etA and xss
uniquely. By Lemma 17, we then recover A uniquely from V.

To prove Theorem 2, we choose the generic set T to be
ðU ×Sþ

n Þ \W from Lemmas 14 and 16. Then, by Theorem 10, we
may determine V = etA and − V. By Lemma 18, we may then recover
A uniquely from ± V.

Approximate solutions for etA

Throughout, we have assumed the existence of a solution V to the simul-
taneous equationsQi=VPiV

T for i = 1, 2,…, k, but in general there does not
exist a solution for k > 1 and arbitrary (Pi, Qi). This is already strongly
suggested by the fact that V represents n2 indeterminates vij, and that for
each i the equation Qi = VPiV

T represents (n2 + n)/2 quadratic equations.
For k = 2, there are already n2+ n equations, suggesting an overdetermined
system of equations. This is implied, for example, in Corollary 5, in which
the twootherwise arbitrary positive-definitematricesM,Nmust be similar if
a solutionV is to exist: ifP1,P2,Q1,Q2were simply four arbitrarymatrices in
Sþ
n ;M and N could be any elements of Sþ

n and would therefore not
necessarily be similar to each other.

In the absence of exact solutions V to the simultaneous quadratic
matrix equations Qi = VPiV

T, one may still desire approximate solu-
tions V that minimize total error minV

P
idðQi;VPiV

T Þ for some
metric d(X, Y), e.g., in applications to regression. We are not aware of
an analytical solution to this particular minimization problem,
although various other quadratic optimization problems have been
studied before23,24. However, it is possible to reframe the respective
solutions of V from the first, second, and third pairs of covariances
(Pi, Qi) as well-known quadratic optimization problems, and
sequentially solving these three optimization problems may at least
provide informed initial guesses for downstream numerical
optimization.

For the first pair min
V

dðQ1;VP1V
T Þ, there are infinitely many

exact solutions V ¼ Q1=2
1 RP�1=2

1 for R 2 On. For the second pair, one
seeks solutions min

R
dðM;RNRT Þ for symmetric M, N, which is known

as a two-sided orthogonal Procrustes problem25 when d is the metric
induced by the Frobenius norm. The optimal solutions R happen to
still be R ¼ UMΘU

T
N for Θ any signature matrix. Finally, for the third

pair, one seeks optimal solutions minΘ dðY;ΘXΘÞ, which can be
determined by quadratic unconstrained binary optimization
(QUBO)26 for appropriate choices of d such as that induced by the L1
vector-norm.

Specifically, to reframe ∣Y − ΘXΘ∣1 = ∑i,j∣Yij − XijΘiΘj∣ as a QUBO
problem, we first rearrange the error terms into Ising Hamiltonian terms:

jYij � XijΘiΘjj ¼
jYij � Xijj � jYij þ Xijj

2
ΘiΘj þ

jYij � Xijj þ jYij þ Xijj
2

;

which can be collected into the symmetric pairwise interactionmatrix J that
defines the variable term of the Hamiltonian:

Jji ¼ Jij ¼
jYij � Xijj � jYij þ Xijj

2
þ jYji � Xjij � jYji þ Xjij

2
:

Since Ising-like Hamiltonians are equivalent to general QUBO
problems by a change-of-basis, we may then use existing mixed-
integer programming packages to solve for optimal Θ*’s that
minimize ΘJΘ. Thus, from three pairs {Pi, Qi}, one may compute a
solution V 0 that is “stepwise optimal”:

V 0 ¼ Q1=2
1 UMΘ

�UT
NP

�1=2
1 :
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Remark 7Onemay also stop at two pairs of covariances, and determine
the diagonal entries of the signature matrix Θ by comparing the signs of v!
and w! and subsequently finding a solution for xss as described in Theorem 8.

Numerical solutions of etA in the presence of noise and non-
linearity
Whereas the previous section shows the possibility of solving for n-
dimensional linear dynamics using distributions from only three time
points, here we numerically demonstrate the empirical performance for
determining A given various practical issues of real-world single-cell omics
data. Specifically, we consider sampling noise, measurement noise, hidden
variables, and non-linearities in the dynamics. Notably, when dealing with
nonlinear dynamical systems _x ¼ FðxÞ, our aim will be to approximately
recover the Jacobian at some or all of the steady state points fx�i g s.t. _x ¼ 0,
by the local approximation FðxÞ ¼ Aðx � x�i Þ þ O ðx � x�i Þ2

� �
. Practically,

unstable steady state points will be harder, but not impossible, to observe
than stable ones when one only has finitely many data points.

We first define a loss function for the purposes of numerical optimi-
zation. For a sequence of covariance matrices fCigi¼0;...k and means
fmigi¼0;...k measured at different times ti, assumed to originate from a
common starting distribution with mean μ0 and covariance Σ0 at t0, we
define the loss-function Lseries(A, Σ0, μ0, xss):

Lseries A; μ0;Σ0; xss
� � ¼

Xk
i¼0

d2 etiAΣ0e
tiA

T
;Ci

� �
þ αδ2 etiAðμ0 � xssÞ þ xss;mi

� �

ð22Þ
for some metric d(P, Q) for P;Q 2 Sþ

n , a metric δ(x, y) for x; y 2 Rn,
and an unknown steady state xss. We also include a tuning parameter
α to weigh the covariance-loss and mean-loss differently. In the case
that data originates from different starting distributions with means
fm0rgr¼1;...;j and covariances fΣ0rgr¼1;...;j, one may sum the loss-
functions of each time series:

L A; fm0rg; Σ0r

� �
; xss

� � ¼
Xj

r¼1

Lseries A; μ0r;Σ0r; xss
� �

: ð23Þ

Depending on availability of data and measurement error, it may also be
preferable to insteadfixΣ0 =C0 and μ0 =m0, and optimize L by only varying
A and xss.

As for the specific choice of d2(P, Q), the Frobenius norm-induced
metric:

d2ðP;QÞ ¼ tr ðP � QÞðP � QÞT� �

is one possible choice. We instead considered a “Log”-metric tailored to
covariance matrices27:

d2ðP;QÞ ¼ tr log2ðP�1=2QP�1=2Þ
� �

: ð24Þ

In the following numerical simulations, we chose to only vary A and xss to
optimize Lseries, fixing Σ0 = C0, μ0 =m0; this choice facilitates downstream
analysis of our numerical results in relation to our theoretical results, but
allows any errors in C0 and m0 to propagate to future time points during
optimization. Thus, letting Σ0 and μ0 be free parameters in practical
applications may yield slightly better results. Also, we made use of the Log-
metric for d2 and the Euclidean L2 metric for δ2, with a weight factor α = 0.1.

Numerically fitting data with unequal time intervals
Before considering noise, we first examined whether exact solutions for A
could be easily determined byminimizing Lseries from the exact covariances
Σi and means μi generated by random A’s, for three time points with
intervals bounded above by π/∣bj∣. For numerical simulations in dimensions
n = 5, 7, 10, we found that the majority (~80%) of randomly initialized
gradient-descent optimizations of Lseries did not converge to a solution A*

corresponding to the ground-truthA (Fig. 1a), basedonboth thevalue of the
loss Lseries and the actual average entry-wise error jðA� � AÞijj to ground-
truth A. We assumed that Lseries <10

−1 corresponded to convergence to the
global minimum. From these results, we conclude that there are, as one
might expect,many localminima inLseries,which canbe circumnavigatedby
using the formulae for etA in Theorems 8 and 10.

Then,wealso exploredwhether three timepointswas sufficient to solve
forAwhen the time points ti did not occur at equal intervals, i.e., t0− t1 ≠ t1
− t2, and are bounded above by π/∣bj∣. For n = 5, 7, 10, we again generated
randommatrices A as ground-truth, setting xss = 0, and tried to solve for A
by optimizing Lseries using a simulated time-series. Keeping only optimi-
zation solutions forwhichLseries <0.1,we compared average entry-wise error
of the solutionsA* for both even anduneven intervals (Fig. 1b).Uneven time
intervals were chosen uniformly at randombetween ½0; π=jbmaxj� for jbmaxj

Fig. 1 | Numerical solutions of A for even and uneven time intervals. a Density
scatter plot of loss Lseries at convergence for gradient descent from random initi-
alizations, and the resulting average entry-wise error magnitude between ground-
truthA and converged solutions A*. Inset shows cumulative distribution function of
loss values. Red line indicates loss cutoff for solutions assumed to have converged

numerically to a global optimum. b Entry-wise error of solutionsA* to ground-truth
for different dimensions, and time-series with either even (blue) or uneven (orange)
time intervals. cDependence of A* error on the smallest simulated time interval in a
time-series.
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the magnitude of the largest imaginary component of a given A’s eigenva-
lues. We then simulated a corresponding even-interval time series by using
three time points spaced evenly between 0 and t2 for the same A’s, μ0’s, and
Σ0’s. Since we have analytically shown that three time points are necessary
and sufficient toguaranteeuniqueness for equal intervals, the rangeof entry-
wise errors from optimizing Lseries for even intervals (blue) are representa-
tive of expected numerical error fromoptimization as opposed to the lack of
a unique solution.

We found that entry-wise errors of A* were comparable between
optimizingwith even intervals and uneven intervals. In the few instances for
which uneven time intervals led to relatively large errors, at least one interval
ti+1− tiwas often twoor three orders ofmagnitude less than in the even case
(Fig. 1c); this corresponds to the limit (ti+1 − ti)→ 0 that can occur in the
uneven case, in which three time points of data effectively approaches two
time points worth, and there is no unique solution. Thus, these simulations
suggest that three unevenly spaced time points may also be generically
sufficient to solve for the linear dynamics A.

Recovering dynamics from data with sampling and
measurement noise
Next, we evaluated how well one can recover a ground-truth A using
noisy estimates {Ci} and {mi} of covariance matrices and means
under various practical conditions. First, to investigate the effects of
sampling noise, we specified ground-truth matrices A and initial
distributions (μ0, Σ0) as was done above, for dimensions n = 5, 7, 10,
15, 20, computed the ground-truth trajectory of distributions for 3, 4,
or 5 time points evenly spaced between ½0; 0:9π=jbmaxj�, and then
generated N = 300, 1000, 3000 samples from each ground-truth dis-
tribution at each timepoint to compute estimated covariances and
means {Ci}, {mi}. Then, we numerically optimized for minimal-loss
solutions A*, and evaluated the average entry-wise error jðA� � AÞijj.

During numerical optimization, we asked if the theory-motivated
solution would still be informative in a noisy setting, by using the approx-
imate solutions described in aprevious section to initialize optimization.We
compared the error of converged solutions to those resulting from initi-
alizing randomly over a range of entries between [−1.5, 1.5] to emulate the
practical uncertainty in the range of parameters (i.e., entries) of A. The
resulting average entry-wise error of any converged solution A* to ground
truth A are compared in Fig. 2 for these two initialization strategies,
regardless of whether the lossLseries was low or high.We found that random
initialization was seldom able to converge to the better optima often found
by theory-based initialization, indicating that the approximate solutions
described in a previous section can even be useful for efficiently finding
“good fits” when given noisy data.

We then examined howmuch estimation error results from sampling
noise, assuming that a globally optimal solution is found. To do so, for any
given ground-truth A, we optimized multiple times using a mix of theory-
based and random initialization strategies to improve the chances offinding

a global optimum, keeping the lowest-loss solution as the final solution A*.
Examining only the subset of simulations in which the optimized loss Lseries
<0.3n, we found that the entries of A could often be estimated with an
average error often between 10−2 and 10−1 (Fig. 3), which was small com-
pared to the original entries’ range of 1. Errors generally increased with
increasing dimension n, and decreased with sample size N and number of
time points T, as one would expect, and for example, in the worst case of
n = 20, T = 3, and N = 300, we saw that noise made it difficult to recover a
good estimate A* of A.

We also explored the effects ofmeasurement noise on estimation error
by defining a new loss function that adds a measurement error covariance
matrix E to Lseries:

Lnoise A; μ0;Σ0; xss;E
� � ¼

Xk
i¼0

d2 etiAΣ0e
tiA

T þ E;Ci

� �
þ αδ2ðetiAðμ0�xssÞ;miÞ:

Depending on the situation, E could also be simplified, e.g., to a diagonal
matrix, or even to amatrix σ2I for a single noise-parameter σ.We computed
covariances andmeans as before, but addingGaussiannoisewith covariance
matrix σ2I to each datapoint. Specifically, we chose σ values that resulted in
the total variance at time 0 (i.e., tr(Σ0+ σ2I)) being composedof ~10%, 26%,
55%, or 78% noise. In Fig. 4a, we show the estimation errors for T = 3 and
N = 3000 when Lnoise <0.5n, minimizing Lnoise while keeping σ as a fixed
parameter corresponding to the simulated scenario. Even when measure-
ment noise is modeled perfectly as in our simulations, we found that
estimation error increases with increasing noise. In the case of T = 3,
N = 3000, only n = 5 dynamics could be estimated with average entry-wise
error on the order of ~0.1, and typically only whenmeasurement noise was
not the majority of the total variance. For T = 4 time points, higher-
dimensional dynamics could again be partially recovered (Fig. 4b), although
again only when measurement noise was low.

Overall, our simulations suggest that evenwith the practical challenges
of sampling andmeasurement noise that onemight encounter in single-cell
omics data, one can still use three or more time points of estimated cov-
ariances and means to recover an underlying dynamical system A of
dimension n >5 with reasonable estimation error.

Remark 8 Although sufficiently small time intervals tmax are necessary
to theoretically guarantee thatA can be recovered uniquely, itmay sometimes
bemore favorable in thepresence of noise to choose time intervals inwhich the
data distributions have the largest change between time-points, i.e., the most
“signal-to-noise”. Even if this means choosing a larger interval tmax, it is still
possible to recover A’s eigenvectors and eigenvalue’s real-parts.

Estimating stable and unstable subspaces of nonlinear dynami-
cal systems
While the results thus far have been restricted to linear dynamical systems,
we wondered if finding the best-fitting linear dynamical system for a non-
linear system _x ¼ FðxÞ could still provide useful information about F(X).

Fig. 2 | Estimation error of initialization strategies
in the presence of sampling noise. Average entry-
wise error of locally optimal solutionsA*, depending
on whether initialization was chosen at random (R)
or by theory (T). Results are sorted by number of
time points. Simulations span dimensions n = 5, 7,
10, 15, 20 and sample sizes N = 300, 1000, 3000.
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In particular, dynamical systems theory often analyzes the qualitative
dynamics of a system _x ¼ FðxÞ by first finding all the steady states fx�i g s.t.
Fðx�i Þ ¼ 0, and then analyzing their respective associated linear dynamical
systems via the Jacobians Ji ¼ DxFðxÞjx¼x�i

to determine local stable or
unstable subspaces, as a way to piece together key features of the phase
portrait. We sought to infer similar properties of a dynamical system
without knowing the equations for nonlinear F(x) beforehand, but instead
using time-varying data distributions generated by F(x) and fitting linear
dynamics _x ¼ Aiðx � x�i Þ using the covariance matrices Σt and means μt.

We evaluated how well the stable and unstable subspaces of Ji
can be recovered from data around an isolated steady state x�i of
randomly generated F(x) by simulating trajectories as follows. First,
we generated a trajectory of distributions for a linear dynamical
system _x ¼ Ax as above. To simulate a nonlinear dynamical system,
we then randomly generated an autodiffeomorphism H : Rn ! Rn

by composing three randomly generated autodiffeomorphisms H ¼
g °R °h : both g and h were defined coordinate-wise using random
univariate monotonic splines (note the Jacobians of g and h are thus
diagonal), and R was a rotation chosen randomly from On uniformly
on the Haar measure; we also ensured that g(0) = h(0) = R(0) = 0.
Finally, we applied H to each xti drawn from the distributions cor-
responding to trajectories of _x ¼ Ax, thereby giving samples yti of a
nonlinear dynamical system _y ¼ FðyÞ ¼ DxHjy¼H�1ðxÞAH

�1ðyÞ with a
unique steady state at 0. Examples of three different auto-
diffeomorphisms Hi(x) for n = 2 are shown in Fig. 5a, alongside the
image of a trajectory (red). We think of these nonlinear systems
_y ¼ FðyÞ as representatives for nonlinear dynamics near a steady
state xss.

For various choices ofn, we thenused the estimated covariancesCt and
means mt from the trajectories of _y ¼ FðyÞ to optimize Lseries.

Fig. 3 | Estimation errors from sampling noise.Average entry-wise errors of best multi-initialization solutionsA* in relation to dimension n, sample sizeN, and number of
time points T. Magenta dots show medians.

Fig. 4 | Estimation errors from measurement noise. a Average entry-wise errors of best multi-initialization solutions A* for varying scales of measurement noise and
dimension, for T = 3, N = 3000. b Same as (a) for T = 4. Blue dots show medians.
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Wespecifically choseN = 3 × 104 andT = 6 so thatwe could eliminate errors
due to noise, as our interest was in whether the best fit A* could even be
related to DyF(y)∣y=0.

Given a linear fitA*, we then compared the deviation of the stable and
unstable subspaces Sstab, Sunst (i.e., the respective eigen-subspaces corre-
sponding to eigenvalues with negative or positive real-part) of A* and J =
DyF(y)∣y=0 by determining the principal angle28 between them. The results
are shown in Fig. 5b for cases where the principal angle is well-defined, i.e.,
bothA* andDyF(y)∣y=0hadnontrivial subspaces.Correspondingp-values for
these principal angles are also shown. Based on these results, the stable and
unstable subspaces ofA* and J are significantly similar in at least 60−80%of
cases. Furthermore, we did not exclude simulations based on the loss Lseries,
since it was unclear whether a large loss corresponded to poor initialization
or to the systematic error offitting a linear system to a nonlinear system, and
so the insignificant ~ 30% of F(y) contains at least some cases of poor
initialization. Thus, fitting linear dynamics to single-cell omics data gen-
erated by a nonlinear dynamical system F(y) is likely informative about
stable and unstable subspaces of F(y).

Interpretations of A in the presence of hidden variables
Practically, if a complex system is governed by _x ¼ FðxÞ for x 2 Rn,
experiments often only observe a subset of the entries of x, i.e., data is often
only available for y 2 Rm form < n and y ¼ Px for P a linear projection
matrix onto the subset of m coordinates. This is likely the case even for a
single-cell RNA sequencing experiment, which despite measuring expres-
sion fromn~105 different genes in a cell, does notmeasure the proteins that
govern the coupled expression dynamics between genes. In such a case, the
dynamics of the observed variables y(t) generally cannot be described by an
autonomous dynamical system _y ¼ GðyÞ, and the methods presented
herein for estimating linear dynamics A do not immediately give inter-
pretable results. However, with additional assumptions, we may still infer
properties of A.

Assuming that a linear system _x ¼ Ax has a slow-fast time-scale
separation, i.e., the real parts of the eigenvalues λk= ak+ ibkhave a gap s.t. a1
<⋯ < as ≪ as+1 <⋯ < an, and furthermore that as+1,⋯ an < 0, then for
times t≫ a�1

sþ1, trajectories x(t) are arbitrarily close to the s-dimensional
subspace Ls spanned by the eigenvectors f v!igi¼1;2;...;s. Consequently, any

dynamics xðtÞ 2 Rn maybe approximatedby the “slow”dynamics of x(t)∈
Ls, given by the “slow” eigenvalues fλigi¼1;...;s and their corresponding
eigenvectors.

If the projection P restricts to a diffeomorphism between
Ls $ PðLsÞ 2 Rm, the dynamics of yðtÞ :¼ PxðtÞ 2 PðLsÞ are smoothly
equivalent to those of x(t) ∈ Ls, and so yðtÞ 2 PðLsÞmay be described by a
linear dynamical system _y ¼ By with the same eigenvalues fλigi¼1;...;s as A.
To ensure that PjLs is a diffeomorphism, we need for Ls \ ker ðPÞ ¼ 0 so
that the map is injective; this is generically true if dimðPðLsÞÞ ¼ s≤m since
ker ðPÞ is a (n − m)-dimensional subspace, and Ls can be any arbitrary s-
dimensional subspace, and an (n − m)-dimensional subspace intersects a
genericm-dimensional subspace only at 0. Then, surjectivity follows by the
definition of a linear projection, and differentiability follows from linearity.
Under these conditions, we may recover B using the observable data
y 2 Rm, which recapitulates the slow eigenvalues λi≤s of the full dynamical
system A.

Furthermore, we can recover partial information about the eigenvec-
tors v!i≤ s. For the slow dynamics on Ls, which we denote by AjLs , let its
eigendecomposition be denoted byAjLs ¼ WEW�1 forW thematrix ofA’s
eigenvectors v!i, andE the diagonalmatrixwith the same eigenvaluesλi≤s as
A, but setting λi>s = 0. Due to smooth equivalence via the linear diffeo-
morphism PLs

, the observable dynamics _y ¼ By relate to _x ¼ AjLs x as:

B ¼ PjLsAjLsPj�1
Ls

¼ PjLsWEW�1Pj�1
Ls
;

which implies that the s columns ofPjLsW corresponding to the eigenvalues
λi≤s form the eigenbasis of B. In many practical cases, P is simply a coor-
dinate projection, and soP vi

! simply gives the observable coordinatesof vi
!.

Thus, from the relative weights of different observed variables yi in the
eigenvectors ofB, wemay recover the observed variables’ relative weights in
the slow eigenvectors vi

! of the full dynamical system A.
A cartoon of these properties is shown in Fig. 6 form = 2 and n = 3. In

single-cell high-dimensional data, it is often assumed or justified from
empirical analysis that the measured variables y lie on a s-dimensional
manifold for s ≪ m < n, often with s <10. In such cases, the relevant
dynamics are effectively of dimension s as opposed tom, and fitting linear

Fig. 5 | Estimating qualitative features of the Jacobian of nonlinear dynamical
systems near steady state. aThree examples of diffeomorphismsHiðxÞ : R2 ! R2

used to generate nonlinear systems from linear ones. The image of blue gridlines and
a red oscillating trajectory are shown. b Principal angles and p-values between the

stable or unstable subspaces of A* and J, for various dimensions. Number of fits for
which the principal angle was meaningful (i.e., neitherA* nor J had a stable/unstable
subspace of full dimension n) are denoted in brackets.
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dynamics to the data can be feasible evenwith current levels of experimental
sampling or measurement noise.

Discussion
We have demonstrated the feasibility of inferring linear dynamics _x ¼
Aðx � xssÞ from single-cell omics time-series data, which can be used to
infer the biomolecular dynamics near steady state xss thatmay represent cell
states or differentiation fates.We showed that twopairs of data distributions
{f0(x), ft(x)} and {g0(x), gt(x)} are generically needed to uniquely determine
etA from the first- and second-order moments μt, Σt (in practice, estimated
means and estimated covariance matrices), and that A could be uniquely
identified so long as the time interval t betweenmeasurements is sufficiently
short compared to the oscillatory components of solutions x(t) toA. In other
words, it theoretically requires only three sequential time points to deter-
mine the n × n matrix A, regardless of how large n is, i.e., how large of a
biochemical interaction network one wishes to investigate.

We then demonstrated by simulation that A can be estimated accu-
rately in the presence of sampling and measurement noise that is encoun-
tered in single-cell omics data, using only 3–5 time points, although noise
and sample size become limiting factors past dimensions of n ~20. While
increasing the number of time points, the sample size, and the signal-to-
noise can help push the limit, an alternative strategy may simply be to
perform dimensionality reduction as a “denoising” process, as is often done
in single-cell data analysis. For example, single-cell omics time-series data
may only portray significant changes over time in a k-dimensional subspace
(e.g., the first k Principal Components), and so k-dimensional dynamics
could be evaluated before translating back to the original n-dimensional
coordinates. Also, the timing of sampling time points is crucial in the pre-
sence of noise, as one would ideally choose time points that capture the
transient dynamics, before they are obscured by noise, along all n dimen-
sions. This may not always be possible in biological systems for which
multiple timescales exist simultaneously, and so a few time points would
need to be sampled at each timescale one wishes to experimentally inves-
tigate. In future work, one might analytically explore the nonlinear opti-
mization landscape that arises for noisy data, the statistics and confidence
intervals of estimated dynamical properties, and better ways to choose
multiple initializations in a theory-motivated fashion, so that well-designed
experiments can efficiently fit higher-dimensional A to data and dynamics
can be analyzed rigorously.

We also addressed how information about dynamical eigenvalues and
eigenvectors can still be recovered even in the presence of “hidden

variables”, if one assumes timescale separation with a sufficiently low-
dimensional slow subspace relative to the dimension of the observed data.
Even when the dynamics _x ¼ FðxÞ are nonlinear, we find that fitting a
model _x ¼ Aðx � x�Þ in the neighborhood of a steady state x* can still allow
for describing stable and unstable subspaces, akin to the traditional analy-
tical approach of qualifying nonlinear dynamics via analysis of linearized
systemsnear steady state.Alternatively, onemight also consider the linearfit
achieved here for a nonlinear dynamical system to be a coarse-grained
model that “smooths out” non-linearities, and interpret the coarse-grained
model without an explicit connection to the Jacobian of F(x); such an
approach has been fruitful in analyzing protein dynamics and may also be
useful in single-cell omics analysis29. Either way, we hope that our proposed
method can help to performdata-driven phase space analysis, without prior
knowledge of the dynamic equations _x ¼ FðxÞ.

In the setting of single-cell data analysis, our approach for inferring
time-dependent behavior contrasts with many existing methods (e.g.,
“pseudo-time” trajectories11) in that we explicitly use experimental infor-
mation on time, whereas other methods often use simplifying assumptions
on the form of F(x) in order to infer time-dependent behavior. Our results
highlight how strong their assumptions must be: even a linear autonomous
F(x) requires at least three time points to determine F(x) = A(x − xss), by
leveraging the rich information in the covariancematrices Σ between single
cells; a general nonlinear F(x) would require ≥3 time points to determine
F(x) in some “unique” sense. More precisely, from an algebraic geometric
perspective, each pair of covariances offer n(n + 1)/2 quadratic equations
that canbeused to solve for then2 unknownentries that comprise thematrix
etA in the linear case, and so it is not entirely surprising that two pairs of
covariances, which offer n2 + n quadratic equations in total, could solve up
to a finite set of 2n solutions for etA, noting that the usual adage of needing as
many equations as there are unknowns does not apply exactly for systems of
nonlinear equations. A more general nonlinear F(x) would involve addi-
tional unknown parameters, and therefore require additional time points to
constrain those parameters. Similar themes can be found in statistical
physics, in which infinitely many non-gradient dynamical systems can
generate the same steady-statedistribution30, and so the assumptionsof both
gradientdynamics aswell as steady-state iswhat allows for certain single-cell
dynamics inference methods to determine dynamics using the data dis-
tribution of a single timepoint29. While our results show the sufficiency of a
few time points for only linear F(x), a careful algebraic accounting of
parameters in other biologically relevant, nonlinearF(x)may also reveal that
O(1) time points are sufficient to uniquely determine dynamics from data.

Our procedure for inferring properties of F(x) from estimated means
and covariances can be integrated into various workflows for inferring
dynamics from data. Our analysis shows that the vast majority of experi-
mental information on A comes from covariance data (i.e., single-cell het-
erogeneity).We did not explicitly consider what information can be further
gleaned from higher-order moments of the data, although we note that for
linear F(x) and Normal distributions f0(x), there is no additional informa-
tion beyond that provided by means and covariances. On a related note, it
may also be of benefit to integrate single-cell omics data, which offers the
advantage of high-dimensional measurement, with traditional time series
data of only a few proteins/variables, which offers high time resolution, to
better infer the dynamical system F(x). For example, it may be easier to
determine the threshold on the time intervals t<π=jbmaxj using a time series
experiment, or to estimate the neighborhoods in which F(x) is well-
approximated by linear dynamics. Furthermore, prior information about
F(X) might also be used in tandem with the analysis provided by our pro-
cedure: databases on gene or protein interactions31 might be used to fix
certain entries of A to 0 if there are no previously recorded correlations
implying network interactions; other data analysis methods for inferring
biochemical reaction network properties from single-cell data (e.g., stoi-
chiometry of reactions32) could also constrain the form of A.

Finally, to incorporate our data-driven local linear analysis into amore
global framework, one next step may be to consider how data analysis may
be carried out on multistable dynamical systems. Since multi-modal

Fig. 6 | Linear dynamical properties preserved under projection.Toy example of a
linear dynamical system _x ¼ Ax restricted to a plane in R3 representing a slow
manifold, alongside the projection of trajectories (blue) fromR3 onto the coordinate
subspace R2 representing the subspace of experimentally observed variables. The
observed dynamics inR2 are given by _y ¼ By, and has eigenvectors (red) and
eigenvalues related to _x ¼ Ax.
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distributions ft(x) are a frequent occurrence in single-cell data, one might
hope to derive relations between the effects of nonlinear dynamics F(x) on
ft(x) and data cluster analysis (which might also be regarded implicitly as
analyzing higher-order moments). For example, mixture modeling of dis-
tributions ft(x) as linear combinations of components ft(x) =∑kpk(x) may
offer a natural starting point formodeling a dynamical systemwithmultiple
hyperbolic steady states and no other complications such as limit cycles or
strange attractors. Local linear analysis might then be carried out on each
mixture component pk(x). Ultimately, one might imagine developing
methods to use the Liouville/transport equation33 to solve for F(x) using
ft(x), but it is unclear howmuch data and time points would be needed to do
so in well-defined or practical manner. In general, we hope that the rich
information in single-cell omics data may be fully leveraged to understand
the dynamical systems and biomolecular networks that govern cell states
and fates.

Methods
Numerical optimization by gradient descent
We implemented the loss-functionsLseries andLnoise inMATLAB, and solved
numerically using fminunc() with the following options:
MaxFunctionEvaluations=106, OptimalityTolerance=10−7, MaxIterations=
106, FiniteDifferenceStepSize=10−7, StepTolerance=10−10, and Finite
DifferenceType=central.

Generating ground-truth dynamical systems A and distributions
In all cases, ground-truth dynamical systemsAwere randomly generated by
choosing the entriesAij froma uniformdistribution on [−0.5, 0.5]. For each
such A, a corresponding time series was defined by choosing time points ti
evenly spaced between ½0; 0:9π=jbmaxj� for bmax the largest imaginary
component amongst all the eigenvalues ofA. In the case where uneven time
intervals were tested, the ti were chosen uniformly at random in the same
range, and then re-ordered.

Then, ground-truth distributions were defined by just the parameters
μi, Σi: first, we generated random μ0 and Σ0 by taking the estimated mean
and covariance of n+ 2 random n-vectors with entries chosen uniformly at
random from[0, 10].Then, usingA and the ti’s,we computedμi andΣiusing
etiA. To generate noisy covariancesCi andmeansmi, in the case of sampling
noise we took the estimates for N samples from the normal distributions
given by μi and Σi. In the case of measurement noise, we did the same but
sampling instead fromnormal distributions given byμi andΣi+ σ2I, forσ2 =
1, 3, 10, 30. Since the diagonal entries of Σ0 as generated here have an
expectation value of ~ 8, the chosenvalues ofσ2 correspond tomeasurement
noise percentages σ2/(8+ σ2) around ~ 10, 26, 55, and 78%.

Initialization strategies
To generate an initialization based on theory, we took three sequential
covariances Ci (at random if there were more than three time points), and
determined a guessV ¼ Q1=2

1 RP�1=2
1 forP1=C0 andQ1=C1. ForR, weused

the estimateR ¼ UMΘU
T
N forUM andUN the orthogonal eigenvector bases

of M, N as defined in Theorem 6, taking P2 = C1 and Q2 = C2. For Θ, we
defined the signature matrixD ¼ sgn ðvi=wiÞ from Theorem 8 for v!; w!.
We thendetermined an initialization xss as inTheorem8, using the guess for
V. An initialization for A was given by Log(V)/δt, for δt the first two time
points. If Log(V) was complex, we took only the real-parts of Log(V)/δt as
the initialization for A.

To allow for multiple initializations for a given A, additional initi-
alizations were generated by choosing the entries of A and xss uniformly at
random from the ranges [−0.5, 0.5] or [−1.5, 1.5], or taking the theory-
based initialization of A but the random guess for xss. Each of these three
initializations was used once per given A.

Generating random homeomorphisms H(x)
To generate a random diffeomorphism HðxÞ : Rn $ Rn, we generated
three separate diffeomorphisms g, R, h on Rn and composed them as
g °R °h: R was an orthogonal matrix selected randomly from the uniform

Haarmeasure, using the standard technique of applyingQR decomposition
to normally distributed variables34. Both g and h were defined coordinate-
wise by a randommonotonic spline, e.g., for the i’th coordinate, gi(x) = s(xi)
for the spline sðxÞ : R ! R.

The splines s(x) were randomly generated by first defining a
spline p(x) at the points p(− 3) = y1, p(0) = y2, and p(3) = y3 for yi’s
chosen from the uniform distribution on the interval [−3, 3] and
sorted in ascending order, and p(x) = x for x =−6, −5, −4, 4, 5, 6.
Using these nine points we fit the piecewise cubic hermite inter-
polating polynomial to define p(x), using the pchip() function in
MATLAB. Then, we defined s(x) = p(x) − p(0), so that s(0) = 0, and
thus h(0) = g(0) = 0 and H(0) = 0.

To ensure that the distribution of trajectories was mostly contained in
the nonlinear regions of the s(x)’s domain, we generated the parameters μ0
and Σ0 as before, but choosing entries for the n-vectors used to generate Σ0
uniformly in [0, 3], and entries for μ0 in [0, 1].

During numerical optimization of Lseries for the nonlinear simulations,
we used 5 initializations with entries randomly chosen from [−0.5, 0.5] per
ground-truth system _y ¼ FðyÞ.

Null distribution of subspace principal angles
To compute the p-value for the principal angle between two subspaces (of
respective dimensions k and l contained inRn), we generated 100 pairs of k-
dimensional and l-dimensional subspaces and computed the principal angle
between each pair to create a simulated null distribution. Each subspacewas
generated at random by first selecting an orthogonal matrix U 2 On with
uniform probability on the Haar measure, and then selecting the first k or l
columns of U to span a subspace.

Code availability
All original code has been deposited at GitHub (https://github.com/
shuwang543/covar_lin_dyn) and is publicly available as of the date of
publication (https://doi.org/10.5281/zenodo.12604544).
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