BACK TO INDEX

Publications about 'sampling'
Articles in journal or book chapters
  1. Z. Liu, N. Ozay, and E. D. Sontag. Properties of immersions for systems with multiple limit sets with implications to learning Koopman embeddings. Automatica, 2024. Note: Under revision. Preprint in https://arxiv.org/abs/2312.17045, 2023/2024.[PDF] Keyword(s): linear systems, nonlinear systems, observables, Koopman embedding, duality.
    Abstract:
    Linear immersions (or Koopman eigenmappings) of a nonlinear system have wide applications in prediction and control. In this work, we study the non-existence of one-to-one linear immersions for nonlinear systems with multiple omega-limit sets. While previous research has indicated the possibility of discontinuous one-to-one linear immersions for such systems, it remained uncertain whether continuous one-to-one linear immersions are attainable. Under mild conditions, we prove that any continuous one-to-one immersion to a class of systems including linear systems cannot distinguish different omega-limit sets, and thus cannot be one-to-one. Furthermore, we show that this property is also shared by approximate linear immersions learned from data as sample size increases and sampling interval decreases. Multiple examples are studied to illustrate our results.


  2. S. Wang, M.A. Al-Radhawi, D.A. Lauffenburger, and E.D. Sontag. How many time-points of single-cell omics data are necessary for recovering biomolecular network dynamics?. npj Systems Biology and Applications, 10, 2024. [PDF] Keyword(s): single-cell data, identifiability, network reconstruction, dynamical systems.
    Abstract:
    Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, which enables the data-driven study of highly complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as the time trajectories of cell states. These ``dynamical phenotypes'' are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high-dimensionality and lack of individual cell traces, three timepoints of single-cell omics data are theoretically necessary and sufficient in order to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more timepoints even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.


  3. D. Nesic, A.R. Teel, and E.D. Sontag. Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems. Systems Control Lett., 38(1):49-60, 1999. [PDF] Keyword(s): input to state stability, sampled-data systems, discrete-time systems, sampling, ISS.
    Abstract:
    We provide an explicit KL stability or input-to-state stability (ISS) estimate for a sampled-data nonlinear system in terms of the KL estimate for the corresponding discrete-time system and a K function describing inter-sample growth. It is quite obvious that a uniform inter-sample growth condition, plus an ISS property for the exact discrete-time model of a closed-loop system, implies uniform ISS of the sampled-data nonlinear system; our results serve to quantify these facts by means of comparison functions. Our results can be used as an alternative to prove and extend results of Aeyels et al and extend some results by Chen et al to a class of nonlinear systems. Finally, the formulas we establish can be used as a tool for some other problems which we indicate.


  4. E.D. Sontag. Integrability of certain distributions associated with actions on manifolds and applications to control problems. In Nonlinear controllability and optimal control, volume 133 of Monogr. Textbooks Pure Appl. Math., pages 81-131. Dekker, New York, 1990. [PDF] Keyword(s): controllability.
    Abstract:
    Results are given on the integrability of certain distributions which arise from smoothly parametrized families of diffeomorphisms acting on manifolds. Applications to control problems and in particular to the problem of sampling are discussed. Pages 42-50 apply the results to the control of continuous time systems; this is an exposition of some of the basic results of the Lie algebraic accessibility theory.


  5. A. Arapostathis, B. Jakubczyk, H.-G. Lee, S. I. Marcus, and E.D. Sontag. The effect of sampling on linear equivalence and feedback linearization. Systems Control Lett., 13(5):373-381, 1989. [PDF] [doi:http://dx.doi.org/10.1016/0167-6911(89)90103-5] Keyword(s): discrete-time, sampled-data systems, discrete-time systems, sampling.
    Abstract:
    We investigate the effect of sampling on linearization for continuous time systems. It is shown that the discretized system is linearizable by state coordinate change for an open set of sampling times if and only if the continuous time system is linearizable by state coordinate change. Also, it is shown that linearizability via digital feedback imposes highly nongeneric constraints on the structure of the plant, even if this is known to be linearizable with continuous-time feedback.


  6. E.D. Sontag. A Chow property for sampled bilinear systems. In C.I. Byrnes, C.F. Martin, and R. Saeks, editors, Analysis and Control of Nonlinear Systems, pages 205-211. North Holland, Amsterdam, 1988. [PDF] Keyword(s): discrete-time, bilinear systems.
    Abstract:
    This paper studies accessibility (weak controllability) of bilinear systems under constant sampling rates. It is shown that the property is preserved provided that the sampling period satisfies a condition related to the eigenvalues of the autonomous dynamics matrix. This condition generalizes the classical Kalman-Ho-Narendra criterion which is well known in the linear case, and which, for observability, results in the classical Nyquist theorem.


  7. E.D. Sontag. Orbit theorems and sampling. In Algebraic and geometric methods in nonlinear control theory, volume 29 of Math. Appl., pages 441-483. Reidel, Dordrecht, 1986. [PDF]
    Abstract:
    This paper proposes a notion of smooth action on a manifold, and establishes a general integrability result for certain associated distributions. As corollaries, various classical and new results on manifold structures of orbits are established, and the main theorem on preservation of transitivity under sampling is shown to be a simple consequence.


  8. E.D. Sontag. An eigenvalue condition for sample weak controllability of bilinear systems. Systems Control Lett., 7(4):313-315, 1986. [PDF] [doi:http://dx.doi.org/10.1016/0167-6911(86)90045-9] Keyword(s): discrete-time.
    Abstract:
    Weak controllability of bilinear systems is preserved under sampling provided that the sampling period satisfies a condition related to the eigenvalues of the autonomous dynamics matrix. This condition generalizes the classical Kalman-Ho-Narendra criterion which is well known in the linear case.


  9. E.D. Sontag. An approximation theorem in nonlinear sampling. In Mathematical theory of networks and systems (Beer Sheva, 1983), volume 58 of Lecture Notes in Control and Inform. Sci., pages 806-812. Springer, London, 1984. [PDF]
    Abstract:
    We continue here our investigation into the preservation of structural properties under the sampling of nonlinear systems. The main new result is that, under minimal hypothesis, a controllable system always satisfies a strong type of approximate sampled controllability.


  10. E.D. Sontag. A concept of local observability. Systems Control Lett., 5(1):41-47, 1984. [PDF] Keyword(s): observability.
    Abstract:
    A notion of local observability, which is natural in the context of nonlinear input/output regulation. is introduced. A simple characterization is provided, a comparison is made with other local nonlinear observability definitions. and its behavior under constant-rate sampling is analyzed.


  11. E.D. Sontag. Remarks on the preservation of various controllability properties under sampling. In Mathematical tools and models for control, systems analysis and signal processing, Vol. 3 (Toulouse/Paris, 1981/1982), Travaux Rech. Coop. Programme 567, pages 623-637. CNRS, Paris, 1983. [PDF] Keyword(s): controllability, sampling, nonlinear systems, real-analytic functions.
    Abstract:
    This note studies the preservation of controllability (and other properties) under sampling of a nonlinear system. More detailed results are obtained in the cases of analytic systems and of systems with finite dimensional Lie algebras.


Conference articles
  1. D. Nesic, A.R. Teel, and E.D. Sontag. On stability and input-to-state stability ${\cal K}{\cal L}$ estimates of discrete-time and sampled-data nonlinear systems. In Proc. American Control Conf., San Diego, June 1999, pages 3990-3994, 1999. Keyword(s): input to state stability, sampled-data systems, discrete-time systems, sampling.


  2. B. Jakubczyk and E.D. Sontag. The effect of sampling on feedback linearization. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec.1987, pages 1374-1379, 1987.


  3. E.D. Sontag. Further results on accessibility under sampling. In Proc.Conf. Info. Sci. and Systems, Johns Hopkins University, March 1985, 1985.


  4. E.D. Sontag. Further remarks preservation of accessibility under sampling. In Proc. Johns Hopkins Conf. on Info. Sci. and Systems, 1983, pages 326-332, 1983.


  5. E.D. Sontag and H.J. Sussmann. Accessibility under sampling. In Proc. IEEE Conf. Dec. and Control, Orlando, Dec. 1982, 1982. [PDF] Keyword(s): discrete-time.
    Abstract:
    This note addresses the following problem: Find conditions under which a continuous-time (nonlinear) system gives rise, under constant rate sampling, to a discrete-time system which satisfies the accessibility property.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:36 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html