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a b s t r a c t

Linear immersions (such as Koopman eigenfunctions) of a nonlinear system have wide applications in
prediction and control. In this work, we study the properties of linear immersions for nonlinear systems
with multiple omega-limit sets. While previous research has indicated the possibility of discontinuous
one-to-one linear immersions for such systems, it has been unclear whether continuous one-to-one
linear immersions are attainable. Under mild conditions, we prove that any continuous immersion to
a class of systems including finite-dimensional linear systems collapses all the omega-limit sets, and
thus cannot be one-to-one. Furthermore, we show that this property is also shared by approximate
linear immersions learned from data as sample size increases and sampling interval decreases. Multiple
examples are studied to illustrate our results.

© 2025 Published by Elsevier Ltd.
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1. Introduction

Applied Koopman operator theory has drawn much attention
in recent years due to its potential in the analysis, prediction,
and control of nonlinear systems. The main idea behind this is
fairly straightforward: As initially shown by Koopman (1931), a
onlinear system can be equivalently represented by an infinite-
imensional linear system whose states consist of observables
f the nonlinear system. If a finite-dimensional invariant sub-

space of this infinite-dimensional linear system is found, a finite-
dimensional linear representation of the nonlinear system, called
he Koopman representation, can be extracted from its basis. This
akes prediction and control for nonlinear systems much easier
ince existing theoretical and algorithmic tools established for
inear systems can now be applied to nonlinear systems via their
inite-dimensional linear representations. Compared with local
inearization by Taylor expansion, the Koopman representation
an capture global behaviors of the system (Brunton, Budišić,
Kaiser, & Kutz, 2021; Mauroy, Susuki, & Mezić, 2020) and thus
pens up exciting possibilities in various applications, such as
odel reduction and control of PDEs (Kutz, Proctor, & Brunton,
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2018; Peitz & Klus, 2020), prediction of chaotic systems (Brunton,
runton, Proctor, Kaiser, & Kutz, 2017), modeling and control of

soft robots (Bruder, Fu, Gillespie, Remy, & Vasudevan, 2020), and
model predictive control of nonlinear systems (Korda & Mezić,
2018).

The idea behind Koopman representations and embeddings of
onlinear systems in linear (or bilinear, when there are controls)
ystems has been a recurring theme in the control literature,
albeit under different names. Finite-dimensional embeddings cor-
respond to finite-dimensional spaces of observables (Wang &
Sontag, 1989). The Koopman representation can be interpreted
s the ‘‘dual system’’ used in linear theory (Kalman duality) and
ore generally as the foundation of the duality between observ-
bility of a nonlinear system and controllability of a (generally
nfinite-dimensional) system of observables, the adjoint system.
ee for example the work in Sontag (1979, 1995a), Sontag and

Rouchaleau (1976) on algebraic observability (strong reachability
of the adjoint system, and surjective comorphisms into cosystems
in the first reference) and a brief mention in Exercise 6.2.10
in the textbook (Sontag, 1998). A very closely related concept,
ut for infinite-dimensional linear systems, is ‘‘topological ob-
ervability’’, which amounts to the exact reachability of a dual
ystem (Yamamoto, 1981).
The primary challenge in applying Koopman operator theory

to prediction and control lies in identifying a suitable Koopman
representation. This involves finding a nonlinear transformation
of the system states such that the transformed states evolve like
a linear system. We call such a transformation a linear immersion.
Scalar-valued linear immersions are also known as Koopman
eigenfunctions in the literature. As a trivial example, any constant
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https://www.elsevier.com/locate/automatica
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2025.112226&domain=pdf
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function is a linear immersion for an arbitrary system, but this
linear immersion is useless in practice since it does not include
any information about the original nonlinear system. Ideally,
e want to find invertible linear immersions, ensuring that the
rajectories of the original nonlinear system are fully character-
zed by its linear representation. In instances where invertible
inear immersions cannot be manually derived, especially for
igher-dimensional systems, numerical approximation becomes
ecessary. Various numerical methods have been developed to
pproximate linear immersions from data (Brunton, Proctor, et al.,

2016; Tu, Rowley, Luchtenburg, Brunton, & Kutz, 2014; Williams,
evrekidis, & Rowley, 2015). A crucial guideline for achieving
ow approximation error in these methods is to carefully select
 domain of interest where linear immersions are intended to
e learned. In practice, for systems with multiple equilibria, a
ommonly mentioned insight is that a continuous one-to-one lin-
ar immersion across multiple isolated equilibria does not exist,
upported by multiple analytical and numerical examples in the
iterature (Bakker, Nowak, & Rosenthal, 2019; Bakker, Ramachan-
ran, & Rosenthal, 2020; Brunton, Brunton, et al., 2016; Mauroy

& Mezić, 2013; Page & Kerswell, 2019; Williams et al., 2015).
Consequently, numerical methods are recommended to focus on
learning local linear immersions within the domain of attraction
of each equilibrium. However, recent work from Arathoon and
valheim (2023) challenges this insight. In particular, Arathoon
nd Kvalheim (2023) construct a smooth system with multiple
solated equilibria that admits a smooth one-to-one linear im-
ersion. These positive and negative examples suggest that the

non-existence of continuous one-to-one linear immersions is not
solely determined by the presence of multiple isolated equilibria.
To provide more accurate guidance on approximating linear im-
ersions, it is imperative to reassess the aforementioned insight
nd identify the actual factors that determine the existence or
on-existence of continuous one-to-one linear immersions.
To address these inquiries, in this work, we study the proper-

ies of continuous linear immersions for systems with multiple
imit sets, and their implications on algorithms that approxi-
ate linear immersions from data. In particular, our contributions

nclude:

• We introduce a novel class of systems, termed systems with
closed basins, including both finite-dimensional linear sys-
tems and incrementally stable systems (Section 2).

• For systems with multiple ω-limit sets, we prove that any
continuous immersions into a system with closed basins,
under mild conditions, collapses all the ω-limit sets into one
and thus cannot be one-to-one. We then demonstrate the
applicability of our results with multiple examples from the
literature (Section 3).

• For the same class of systems, we show that approximate
linear immersions learned with data converge to functions
that collapse all the ω-limit sets, as sampling time decreases
and sample size increases (Section 4).

• We show several extensions of the main theorem that can
work with a broader class of systems (Section 5).

A preliminary version of this work was presented at the IFAC
orld Congress (Liu, Ozay, & Sontag, 2023), focusing exclusively

on one-to-one immersions. In this work, we extend the results
in Liu et al. (2023) to encompass immersions that are not neces-
sarily one-to-one in Section 3. Additionally, we introduce entirely
ew results in Sections 4 and 5.
Related work: There is a rich literature on the classes of

systems that can be immersed into linear systems, including
systems confined in the domain of attraction of a stable equi-
librium (Grüne, Sontag, & Wirth, 1999; Lan & Mezić, 2013) or a
2

closed orbit (Lan & Mezić, 2013), poly-flow systems (Van Den Es-
sen, 1994), observable nonlinear systems (Levine & Marino, 1986),
and even control-affine systems (for bilinear immersions) (Lo,
1975). However, the existence of linear immersions for sys-
tems with multiple isolated equilibria remains unresolved. Given
hat the presence of multiple equilibria is a key feature dis-
tinguishing nonlinear systems from linear ones, there has been
significant discussion on whether such systems can be immersed
into linear systems. It is initially observed in a numerical ex-
ample from Mauroy and Mezić (2013) that the approximate
linear immersion over a domain that contains two equilibria
becomes singular at one of the equilibria. Motivated by this
observation, Williams et al. (2015) suggest that linear immersions
hould be approximated within the domain of attraction of each
equilibrium to avoid singularities. This suggestion is supported by
the work from Page and Kerswell (2019), which studies a one-
dimensional system with three equilibria where all the linear
mmersions can be derived manually. For this specific system,
all the derived linear immersions become singular at one of
he equilibria. Potentially motivated by these negative exam-
les, Brunton, Brunton, et al. (2016) claim that it is impossible

to find one-to-one linear immersions for systems with multiple
isolated equilibria. However, this claim is disproved by Bakker
t al. (2019), which presents a one-dimensional system with

three equilibria that admits a discontinuous one-to-one linear
immersion. The paper Bakker et al. (2019) further conjectures
that a linear immersion may exist but become discontinuous at
the boundaries of the basins of attraction. This conjecture is again
disproved by Arathoon and Kvalheim (2023), which constructs a
smooth system with two isolated equilibria that admits a smooth
one-to-one linear immersion. Contrary to these varying claims,
ur work rigorously proves that continuous linear immersions
annot be one-to-one when the system has multiple isolated
quilibria and satisfies specific conditions. Our results confirm

that the negative examples from the literature do not admit con-
tinuous one-to-one linear immersions, while the counter example
in Arathoon and Kvalheim (2023) is the only one not meeting
ur extra conditions and thus allowing a continuous one-to-

one linear immersion. Notably, Kvalheim and Arathoon (2023)
provide necessary and sufficient conditions for the existence of
one-to-one linear immersions for a class of nonlinear systems,
hich is different than the class of systems with multiple limit

sets we consider in this paper. While neither of these two classes
s a subset of the other, for any system lying in the intersection
of them, both our findings and those results from Kvalheim
and Arathoon (2023) can infer the nonexistence of continuous
one-to-one linear immersions.

Notation. We denote the closure of a set X by cl(X). The symbols
R, R≥0, and R>0 denote the real line, the set of non-negative real
numbers, and the set of positive real numbers. The symbols Z and
N denote the set of integers and the set of non-negative integers.
A function α : [0, a) → R≥0, for some a > 0, belongs to class K
if it is strictly increasing and α(0) = 0.

2. Preliminaries

2.1. Problem statement

We consider a continuous-time autonomous system defined
n a (second countable) manifold M :

̇ = f (x), x ∈ M. (1)

Given an initial state ξ ∈ M, we denote the solution of the system
in (1) by ϕ : R≥0 × M → M satisfying ϕ(0, ξ ) = ξ and for all
t ≥ 0,
dϕ(t, ξ )

dt
= f (ϕ(t, ξ )). (2)
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Let X be a path-connected subset of the manifold M that rep-
esents the region in which we want to analyze the system
ehavior. We endow X with the subspace topology induced from
. Throughout the paper, we will assume that ϕ(t, ξ ) is defined

nd contained in X for all ξ ∈ X and t ≥ 0. Furthermore, f
s smooth enough to guarantee the uniqueness and continuous
ependence on the initial states of the solution ϕ(t, ξ ) for all
∈ X and all t ≥ 0.

Remark 1. Every subspace of a second countable space, such as
, is also second countable, which in turn implies that a subset
f X is compact if and only if it is sequentially compact. We will
se this last property.
Given an initial state ξ of the system in (1), we denote the

-limit set of ξ in X by ω+(ξ ), that is the set of all x ∈ X
satisfying that there exists a sequence tn → ∞ such that
imn→∞ ϕ(tn, ξ ) = x (Hirsch, Smale, & Devaney, 2012).

Next, we introduce the definition of immersion, which gen-
eralizes the notion of Koopman eigenfunctions (Mauroy et al.,
2020).

Definition 1. A system ẋ = f (x) on X ⊆ M is immersed in a
system ż = g(z) on a manifold Z if there is a mapping F : X → Z
(an immersion) such that, for all initial states ξ ∈ X and all time
t ≥ 0,

F (ϕ(t, ξ )) = ψ(t, F (ξ )), (3)

where ψ(t, F (ξ )) is the solution of ż = g(z).
If the system ż = g(z) above is linear, the mapping F is called

linear immersion.

Remark 2. This paper investigates the properties of continuous
mmersions for systems with multiple ω-limit sets. Through-
ut the remainder of this paper, unless otherwise specified, any
mmersion under consideration is assumed to be continuous.

Remark 3. Linear immersions are tightly related to Koop-
man operator theory (Brunton, Brunton, et al., 2016): A Koopman
eigenfunction F is a (not necessarily continuous) linear immersion
that immerses ẋ = f (x) in a one-dimensional system ż = λz for
ome λ ∈ R. The span of the entries of any linear immersion F
s a Koopman invariant subspace. In the Koopman operator litera-
ture, the question of embeddings into finite-dimensional linear
systems has been studied in the context of finite-dimensional
spaces of observables invariant under the Koopman operator,
as discussed in Brunton, Brunton, et al. (2016), Sontag (1995b).
However, a finite-dimensional Koopman invariant subspace that
ully characterizes the Koopman operator may not exist. In our
ork, we establish the non-existence of immersions of an even
ore general form, not necessarily arising in this fashion.

Remark 4. If an immersion F is one-to-one, the inverse F−1
:

F (X ) → X exists. Thus we can retrieve the solution ϕ(t, ξ ) of
ẋ = f (x) for any ξ ∈ X from the solution ψ(t, F (ξ )) of ż = g(z)
via the formula ϕ(t, ξ ) = F−1(ψ(t, F (ξ ))).

Remark 5. The term ‘‘immersion’’ is also widely used in the
tudy of differentiable manifolds (see for example (Lee, 2012)),
hich is unrelated to the immersion of dynamical systems con-
idered in this work.
Given a nonlinear system ẋ = f (x), we are most interested

n finding a one-to-one linear immersion F , which fully encapsu-
ates the behaviors of the nonlinear system into a linear system.
owever, in practice finding a one-to-one linear immersion can
e very challenging, and sometimes such a linear immersion
 e

3

Fig. 1. The vector field (red) of the system in (4). The blue curve shows a
trajectory of the system that starts from (0.1, 0) and converges to the unit circle.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

may not even exist. In particular, one might think that a one-
to-one linear immersion may not exist when the ω-limit sets of
he nonlinear system are ‘‘topologically’’ different from those of
linear systems. For instance, nonlinear systems may have limit
cycles but linear systems cannot. However, the following example
shows that it is possible to immerse a system with limit cycles
into a linear system.

Example 1. Consider a two-dimensional system
̇1 = x1 − x2 − x1(x21 + x22),
̇2 = x1 + x2 − x2(x21 + x22),

(4)

with state x = (x1, x2). The system has an unstable equilibrium at
the origin and one stable limit cycle on the unit circle, as shown
by the phase portrait in Fig. 1. Let X = R2

\{0}. Intuitively, one
ay think a linear immersion does not exist for this system over

X since linear systems cannot have a limit cycle. However, this
system does admit a one-to-one linear immersion over X . Let
F : X → R3 be

F (x) = (x1/∥x∥2, x2/∥x∥2, ∥x∥−2
2 − 1). (5)

For a solution x(t) of the system in (4), it can be checked that
F (x(t)) is a solution of the following linear system
u̇ = −v ,

v̇ = u,
̇ = −2w .

(6)

Thus, the one-to-one function F in (5) is a linear immersion of the
two-dimensional system.

This paper focuses on another well-known topological dif-
erence between linear and nonlinear systems, namely that a
onlinear system can have multiple isolated ω-limit sets, but a
inear system cannot. We wonder how the properties of linear
immersions, such as injectivity, are influenced by the presence
f multiple ω-limit sets. Many existing works (Brunton, Brunton,
t al., 2016; Mauroy & Mezić, 2013; Page & Kerswell, 2019) claim

or observe that a continuous one-to-one linear immersion does
ot exist when the system possesses multiple isolated equilibria,
 specific type of ω-limit sets. However, a formal analysis of this
henomenon is missing in the literature. The following discussion
xplains why it is nontrivial to prove this claim: Suppose that
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Fig. 2. For a system ẋ = f (x) with three equilibria, the graph of a one-to-
ne linear immersion (blue) must intersect with the equilibrium set (red) of
he immersing linear system at exactly three points. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

an immersion F that maps a system ẋ = f (x) with multiple
quilibria to a linear system ż = Az exists. According to (3), a
ne-to-one F must map equilibria of ẋ = f (x) to equilibria of
he linear system ż = Az, and map non-equilibrium points to
on-equilibrium points. However, recall that a linear system can
nly have one isolated equilibrium or a subspace of equilibria.
f ż = Az is the former, then F maps all equilibria of ẋ = f (x)
o the unique equilibrium of ż = Az and thus cannot be one-
o-one. Thus, the main challenge of proving or disproving this
laim is to show if it is possible to have a one-to-one F that maps
ẋ = f (x) to an immersing system ż = Az with a subspace of
quilibria. In this case, the only possibility is that the graph of F

intersects with the null space of A at exactly M points, with M
the number of equilibria of ẋ = f (x), as demonstrated by Fig. 2.
he following example shows that this is indeed possible if we

allow the immersion to be discontinuous.

Example 2. Consider a one-dimensional system ẋ = f (x) with
isolated equilibria {xe,i}Mi=1, where xe,1 < xe,2 < · · · < xe,M .

Assume that the solution ϕ(t, ξ ) is defined for any ξ and t ∈ R
(and thus has no finite-time blow-up both forward and backward
in time). Let X = R. This system is immersed in the following
two-dimensional linear system[
u̇
v̇

]
=

[
0 1
0 0

] [
u
v

]
, (7)

by a one-to-one discontinuous function F

F (x) = (8)⎧⎪⎪⎨⎪⎪⎩
(x, 0) f (x) = 0,
(ϕ−1(x, xe,1 − 1), 1) x < xe,1,(
(i + 1)ϕ−1

(
x, x̄e,i

)
, i + 1

)
x ∈ (xe,i, xe,i+1),

((M + 1)ϕ−1(x, xe,M + 1),M + 1) x > xe,M ,

where x̄e,i = (xe,i + xe,i+1)/2, and for any x and ξ ∈ (xe,i, xe,i+1),
the inverse function ϕ−1(x, ξ ) is the time instance t such that
ϕ(t, ξ ) = x, which uniquely exists since x and ξ lie on the same
trajectory. Intuitively, the equilibria of ẋ = f (x) cut the real line
into M + 1 intervals, and the function F in (8) maps trajectories
ithin intervals to different horizontal lines in the lifted space,

ndexed by the state v.
To see how this discontinuous immersion F works in practice,

we take a concrete example of ẋ = f (x) with M = 3

ẋ =
x(1 − x2)
1 + x2

. (9)

The equilibria of this system include ±1 and 0. According to (8),
 one-to-one discontinuous linear immersion F for this system is
4

Fig. 3. The image of the discontinuous immersion F in (10) is shown by the blue
lines and dots. The set of equilibria of the immersed system in (7) is shown by
the red line. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, 0) f (x) = 0,(
ln

⏐⏐⏐⏐ 3x
−2+2x2

⏐⏐⏐⏐, 1) x < −1,(
2 ln

⏐⏐⏐⏐ 3x
−2+2x2

⏐⏐⏐⏐, 2) −1 < x < 0,(
3 ln

⏐⏐⏐⏐ 3x
−2+2x2

⏐⏐⏐⏐, 3) 0 < x < 1,(
4 ln

⏐⏐⏐⏐ 3x
−2+2x2

⏐⏐⏐⏐, 4) x > 1.

(10)

The image of F is shown in Fig. 3. Let us examine the correctness
f F for x0 ∈ (0, 1). For any x0 ∈ (0, 1), the solution ϕ(t, x0) for

̇ = f (x) in (9) is

ϕ(t, x0) =

x20 − 1 +

√(
x20 − 1

)2
+ 4x20e2t

2x0et
. (11)

Plugging the RHS of (11) into (10), we have

F (ϕ(t, x0)) =

(
3 ln

(
3x0

2 − 2x20

)
+ 3t, 3

)
. (12)

According to (12), F (ϕ(t, x0)) is equal to the solution of the linear
system in (7) with respect to the initial state F (x0), showing the
mapping F in (10) is a one-to-one linear immersion of (9) over
(0, 1).

Note that the graph of F in (8) intersects with the subspace
R × {0} of equilibria of (7) at precisely M points, thanks to
he discontinuity. This phenomenon is also observed in contin-
ous one-to-one linear immersions, exemplified in Arathoon and

Kvalheim (2023).
Our work aims to elucidate the relation between the proper-

ies of linear immersions, such as injectivity and continuity, and
he occurrence of multiple ω-limit sets, as indicated by these ex-
mples and the literature. In particular, we address the following
roblem.

Problem: Identify the properties of linear immersions for
systems with multiple ω-limit sets.

2.2. Technical definitions

Definition 2. Given an initial state ξ ∈ X , the trajectory ϕ(t, ξ )
is called precompact in X if the closure of the set {ϕ(t, ξ ) | t ≥ 0}
is compact with respect to the subspace topology on X .
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The following lemma states sufficient (and necessary) condi-
tions for the nonemptiness of ω+(ξ ).

Lemma 1. For any ξ ∈ X , the ω-limit set ω+(ξ ) is nonempty if
the trajectory ϕ(t, ξ ) is precompact in X . If the system is linear with
M = Rn and X closed, then the converse is also true.

Proof. The forward implication is well known. We recall the
tandard proof here. Suppose ϕ(t, ξ ) is precompact in X . Let tn
e a sequence such that tn → ∞. By Definition 2, there exists

a subsequence tnk such that ϕ(tnk , ξ ) converges to a point x in
the closure of {ϕ(t, ξ ) | t ∈ R≥0}. Thus, ω+(ξ ) contains x and is
onempty.
Now suppose that the system in (1) is linear, that is, ẋ = Ax

for some A ∈ Rn×n. If a solution ϕ(t, ξ ) of the linear system is
unbounded, it can be shown that for all M > 0, there exists
tM ≥ 0 such that ∥ϕ(t, ξ )∥2 ≥ M for all t ≥ tM . Then, ω+(ξ ) is
mpty since for any sequence tn → ∞, ∥ϕ(tn, ξ )∥2 → ∞. Thus,
f ω+(ξ ) is nonempty, ϕ(t, ξ ) is bounded and thus is precompact
in Rn. Since X is closed, the closure of ϕ(t, ξ ) in Rn is contained
in X , which implies that ϕ(t, ξ ) is precompact in X . □

Definition 3. For any subset Ω of X , we define its domain of
attraction by

D+(Ω) = {ξ ∈ X | ω+(ξ ) = Ω}. (13)
By (13), if Ω is not an ω-limit set, D+(Ω) is empty.
Finally, we introduce a class of systems with a special property

f the domain of attraction D+(Ω). This class includes all linear
systems. Later we show that this special property is the main
reason why a one-to-one linear immersion may not exist for a
system with more than one ω-limit set.

Definition 4. Let W+ be the set of all nonempty ω-limit sets
of ẋ = f (x) in X . A system of the form (1) has closed basins if the
omain of attraction D+(Ω) is closed for all ω-limit setsΩ ∈ W+.
The following lemma provides sufficient conditions for sys-

tems to have closed basins, which are satisfied by all finite-
dimensional linear systems.

Lemma 2. Any system ẋ = f (x) defined over a subset X of a normed
space has closed basins if for any ω-limit set Ω in W+, the following
two conditions are satisfied

(C1) For any ξ ∈ D+(Ω), ϕ(t, ξ ) is precompact in X .
(C2) The system is incrementally stable in the closure of D+(Ω).

That is, there exists a function α of class K such that, for any
two initial states ξ1 and ξ2 in cl(D+(Ω)) and for all t ≥ 0,
∥ϕ(t, ξ1) − ϕ(t, ξ2)∥ ≤ α(∥ξ1 − ξ2∥).

Proof. Let Ω be an arbitrary ω-limit set in W+. Let x be a limit
oint of D+(Ω). That is, there exists a sequence xk ∈ D+(Ω) such
hat xk → x as k → +∞.

We first show that ω+(x) is nonempty and includes Ω . Pick
any point p ∈ Ω . For each xk, since ω+(xk) = Ω , there exists a
sequence tk → +∞ such that ∥ϕ(tk, xk)− p∥ ≤ 1/k. According to
(C2), since x ∈ cl(D+(Ω)),

∥ϕ(tk, x) − p∥ ≤ ∥ϕ(tk, xk) − p∥ + ∥ϕ(tk, x) − ϕ(tk, xk)∥
≤ 1/k + α(∥x − xk∥) → 0 as k → +∞.

Therefore, ϕ(tk, x) converges to p and thus p ∈ ω+(x). Since p is
picked arbitrarily, Ω ⊆ ω+(x).

Next, we want to show that Ω includes ω+(x). We first prove
the following claim: Given ξ1 and ξ2 in cl(D+(Ω)) and any p ∈

ω+(ξ ), there is a q ∈ ω+(ξ ) such that ∥p − q∥ ≤ α(∥ξ − ξ ∥).
1 2 1 2

5

Let tk → +∞ be a sequence such that ϕ(tk, ξ1) → p. By
C1), the sequence ϕ(tk, ξ2) is contained in a compact subset of X .
herefore, there exists a subsequence t ′k of tk such that ϕ(t ′k, ξ2) →

for some q in ω+(ξ2). By (C2),

∥p − q∥ = lim
k→+∞

∥ϕ(t ′k, ξ1) − ϕ(t ′k, ξ2)∥ ≤ α(∥ξ1 − ξ2∥).

Now we pick any point p ∈ ω+(x). By the claim, there exists
 sequence qk in ω+(xk) such that ∥qk − p∥ → 0. Since Ω is
losed (Alligood, Sauer, & Yorke, 1996), it follows that p ∈ Ω .
Since p is arbitrary, ω+(x) is a subset of Ω .

Since Ω ⊆ ω+(x) and ω+(x) ⊆ Ω , we have ω+(x) = Ω and
thus x ∈ D+(Ω). Since x is an arbitrary limit point of D+(Ω),
D+(Ω) is closed. □

Remark 6. If X is a closed subset of a finite-dimensional normed
space, the condition (C1) in Lemma 2 can be replaced with the
condition that for every Ω ∈ W+, there exists one trajectory in
D+(Ω) that is precompact in X . We also note that we can define
an abstract dynamical system over a metric space, and Lemma 2
can be generalized accordingly.

Corollary 1. Every linear system ẋ = Ax (with X = Rn) has closed
asins.

Proof. We want to prove the corollary by showing that any linear
system satisfies the conditions (C1) and (C2) in Lemma 2. The
ondition (C1) holds for any linear system according to Lemma 1.
To show (C2), let Ω be an arbitrary ω-limit set in W+. Denote

the span of D+(Ω) by S. By the superposition property of linear
systems, since D+(Ω) is forward invariant, S is also forward in-
variant. Thus, without loss of generality, we can restrict the state
space of the system to S. According to (C1) and the superposition
property of linear systems, all trajectories with initial states in
he span S of D+(Ω) are precompact. That implies the system
estricted to S is stable in the sense of Lyapunov. Thus, there
exists M > 0 such that ∥ exp(At)x∥2 ≤ M∥x∥2 for all x ∈ S and

≥ 0.
Now we pick any two states ξ1 and ξ2 in cl(D+(Ω)). Since S is

he span of D+(Ω), S contains ξ1, ξ2, and ξ1 − ξ2. Therefore, for
ny t ≥ 0,

∥ exp(At)ξ1 − exp(At)ξ2∥2 = ∥ exp(At)(ξ1 − ξ2)∥2

≤ M∥ξ1 − ξ2∥2. (14)

Hence, any linear system satisfies the condition (C2). □

3. Main theorem

The following theorem states our main results:

Theorem 1. Suppose that:

(T1) ẋ = f (x) on X can be immersed in a system with closed basins
by a continuous mapping F ;

(T2) trajectories of ẋ = f (x) on X are precompact in X ;
(T3) the set W+ is countable.

Then the set {F (Ω) | Ω ∈ W+
} has exactly one element.

The proof of this theorem can be found in Appendix A. This
theorem essentially states that if there are a countable number
of ω-limit sets and the trajectories of the system are precompact,
any continuous function F that immerses the system into one
with closed basins (in particular, any linear immersion) collapses
all ω-limit sets. A direct consequence of this result is as follows.

Corollary 2. Suppose that (T1), (T2), and (T3) hold and F is
one-to-one, then W+ has exactly one element.
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Combining Corollaries 1 and 2, the following corollary states
a necessary condition for the existence of one-to-one linear im-
ersions (or in general one-to-one immersions to systems with
losed basins).

Corollary 3. If X contains more than one, but at most countably
many, ω-limit sets and all trajectories in X are precompact, then a
ne-to-one linear immersion does not exist for ẋ = f (x) on X .
For non-existence of linear immersions as in Corollary 3, both

recompactness of trajectories and the existence of countable
ut more than one ω-limit sets are not only sufficient condi-
ions; they are indeed necessary in the following sense. The
aper Arathoon and Kvalheim (2023) provides an example of a
wo-dimensional system with two isolated equilibria with some
rajectories that are neither precompact nor backward precom-
act (cf. Section 5.2) that admits a linear immersion. Similarly,
here are systems with uncountably many ω-limit sets that admit
inear immersions, simplest examples being diffeomorphisms of
inear systems with a nontrivial subspace as their equilibria.

Next, we demonstrate the application of our results through
xamples. We first show several examples where a one-to-one
linear) immersion is constructed manually when X does not sat-
sfy the conditions in Corollary 3, but these immersions become
iscontinuous or ill-defined when we slightly modify X to satisfy
hese conditions. Sequentially, we offer examples from the litera-
ture where the existence of a linear immersion is unclear, but our
results establish that continuous one-to-one linear immersions do
not exist.

Example 3. Consider the one-dimensional system

ẋ = x2 − 1. (15)

The ω-limit sets of the system are {−1} and {1}. Let X = (−∞, 1),
hich only contains one ω-limit set {−1}. It can be shown that

ẋ = x2 − 1 on X is immersed in ż = −2z by the one-to-one
mapping

F (x) =
x + 1
x − 1

. (16)

However, if we extend X by a point to X ′
= (−∞, 1], the

function F in (16) is not an immersion anymore, since F (1) is
not defined. This observation is explained by Corollary 3: Since X ′

contains two ω-limit sets {−1} and {+1}, and all trajectories in
−∞, 1] are precompact, there does not exist a one-to-one linear
mmersion for the system on X ′.

Example 4. Consider the one-dimensional system

ẋ = sin(x). (17)

Let X = [0, π ]. The ω-limit sets of the system are {0} and {π}.
Define y = cos(x). Then, the derivative of y satisfies

ẏ = − sin(x)2 = cos(x)2 − 1 = y2 − 1, (18)

with |y| ≤ 1. That is, the system in (17) on X is immersed in
the system in (15) on Z = [−1, 1]. In this example, W+ has two
elements, and all trajectories of x in R are precompact, but a one-
to-one immersion exists. By Theorem 1, this is possible only if the
ystem ẏ = y2−1 does not have closed basins. Indeed, the domain
of attraction D+({−1}) of the system of y on Z is [−1, 1), not a
losed set.
Furthermore, by Example 3, the system of y on [−1, 1) can

e immersed in ż = −2z with the immersion in (16). Thus,
ẋ = sin(x) on X ′

= (0, π ] is immersed in ż = −2z with the
ne-to-one mapping

F (x) =
cos(x) + 1

. (19)

cos(x) − 1

6

If we extend X ′ to X = [0, π ], the function F (x) in (19) is
not defined at 0 and thus is not an immersion on the closed
interval. This can be again explained by Corollary 3 since all the
trajectories of x are precompact, and the interval [0, π ] contains
two limit sets.

Example 5. Consider the one-dimensional system

̇ = x − x3. (20)

The ω-limit sets of the system are {−1}, {0}, and {1}. Let X =

\{0}. Define y = x−2
− 1. Then, ẏ satisfies

ẏ = −2x−3(x − x3) = −2y. (21)

Thus, the system in (20) on X is immersed in ẏ = −2y with the
mmersion F (x) = x−2

− 1. Similar to the previous example, X
ontains two ω-limit sets, but each of its path-connected compo-
ents contains only one ω-limit set and thus this observation is
onsistent with Corollary 3.

Example 6. Consider the two-dimensional system in Example 1.
he ω-limit sets of the system are the origin {0} and the unit
ircle {x | ∥x∥2 = 1}. The linear immersion F (x) in (5) is
continuous in X , but extending it to R2 makes F (x) singular at the
origin and thus no longer an immersion. This can be explained by
Corollary 3: Since all trajectories of x are precompact and the set
R2 contains two ω-limit sets, there does not exist a one-to-one
linear immersion for the system of x on R2.

Example 7. Example 2 shows that a discontinuous one-to-
one linear immersion exists for the one-dimensional system in
9) with three isolated equilibria. We question if this system
possesses a continuous one-to-one linear immersion over R. This
can be answered by Corollary 3: Since X contains three equilibria
and all trajectories are precompact in X , a continuous one-to-one
linear immersion does not exist for this system.

Example 8. Consider the unforced Duffing system in Williams
et al. (2015)
̇1 = x2,

ẋ2 = −0.5x2 − x1(x21 − 1).
(22)

This system has two asymptotically stable equilibria (±1, 0) and
one unstable equilibrium (0, 0), as shown by Fig. 4. Let X be the
entire plane. The work in Williams et al. (2015) suggests that
his system does not admit a one-to-one linear immersion over
X , which is confirmed by our results. According to Corollary 3,
ince the system has three ω-limit sets and all of its trajectories
re precompact in X , there does not exist a one-to-one linear
mmersion over X .

Example 9. Consider the Van der Pol equation
̇1 = x2 − x31 + x1,
̇2 = −x1.

(23)

This system has two ω-limit sets, namely an unstable equilibrium
at the origin and a stable limit cycle, as shown in Fig. 5. Let
X be the entire plane. Since all trajectories of the system are
recompact in X , by Corollary 3, there is no one-to-one linear

immersion over X .

Example 10. Consider the Lorenz system
ẋ = σ (y − x),
̇ = rx − y − xz, (24)

ż = xy − bz,
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Fig. 4. The vector field (red) and phase portrait (blue) of the unforced Duffing
ystem in (22). (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 5. The vector field (red) and phase portrait (blue) of the Van der Pol
quation in (23). (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

with σ = 10, b = 8/3, and r = 28. According to Hirsch et al.
(2012), there exists an invariant ellipsoid E centered at (0, 0, 2r)
that contains all the ω-limit sets of the system, which include
three equilibria and the Lorenz attractor. Let X = E . Since X is
invariant and compact, all trajectories are precompact in X . Thus,
by Corollary 3, there does not exist a one-to-one linear immersion
or the Lorenz system on X .

4. Implication for learning linear immersions from data

In this section, we discuss the implications of our result for
earning linear immersions of ẋ = f (x) from data. Throughout this
section, we make the following assumption.

Assumption 1. The system ẋ = f (x) satisfies conditions (T2) and
(T3) of Theorem 1 on a path-connected forward-invariant subset
X of M.

Generally, given a fixed sampling time τ , a set of N pairs
(xl, x+

l )}
N
l=1 where x+

l = ϕ(τ , xl) for all l, and an integer m > 0,
he task of learning linear immersions F : X → Rm involves
finding the following set

F∗(τ ,N) = {F∗
∈ C(X ,Rm) | ∃A∗

∈ Rm×m, F∗(x+) = eA
∗τ F∗(x ),
l l

7

∀l = 1, . . . ,N}, (25)

where C(X ,Rm) is the space of continuous functions from X
to Rm. The state pairs {(xl, x+

l )}
N
l=1 can be extracted from a sin-

gle trajectory or multiple trajectories of the system. Essentially,
F∗(τ ,N) is the set of continuous functions that satisfy the con-
dition in (3) for linear immersions at finitely many points {xl}Nl=1
and a fixed time step τ .

Alternatively, the learning problem can be stated as:

(F∗, A∗) ∈ arg min
F∈C(X ,Rm),
A∈Rm×m

N∑
l=1

∥F (x′

l) − eAτ F (xl)∥

s.t. x′

l = ϕ(τ , xl),∀l ∈ {1, . . . ,N}. (26)

The set F∗(τ ,N) in (25) corresponds to the solutions F∗ of this
problem that give zero objective value, i.e., those interpolating
the data perfectly.

Theorem 1 shows that under Assumption 1, any linear immer-
sion F satisfies that for all pairs Ωi, Ωj in W+,

F (Ωi) = F (Ωj). (27)

A critical question here is if any learned linear immersion in
F∗(τ ,N) would also share this property in (27). As a sanity check,
note that any constant function F∗(·) = C for some C ∈ Z
belongs to F∗(τ ,N) (with the corresponding A∗

= 0) and does
ap every ω-limit set to the same set. However, this may not
old for every learned linear immersion in F∗(τ ,N) since the
earned linear immersion only satisfies (3) at finitely many points
finitely many constraints), while a true linear immersion needs
o satisfy (3) everywhere in X at all times (uncountably many
constraints). However, in Theorem 2, we show that any function
that does not collapse all ω-limit sets would be excluded from
F∗(τ ,N) for small enough τ and large enough N . The following
proposition provides a crucial step for this result.

Proposition 1. Let {xl}∞l=1 be a dense subset of X . Let F be a
ontinuous mapping from X to Rm. If for all t > 0, there exists a
ampling time τ ∈ (0, t] such that F ∈ F∗(τ ,N) for all N > 1, then
 is a linear immersion of the system.

Proof. Suppose that a continuous function F satisfies the condi-
tions in Proposition 1. Then, for all j ∈ N, there exists a sampling
time τj ∈ (0, 2−j

] such that F ∈ F∗(τj,N) for all N ≥ 1. Clearly,
the positive sequence τj converges to zero as j goes to infinity.
Also, for each j, F ∈ limN→∞ F∗(τj,N) =: F∗(τj). Note that
he limit F∗(τj) is well defined since the set sequence F∗(τj,N)
onotonically shrinks as N increases.
Next, for a fixed j, we want to prove that there exists a matrix

A such that for all l ≥ 1,

F (ϕ(τj, xl)) = eAτjF (xl). (28)

We denote the set of matrices Ad such that F (x+

l ) = AdF (xl) for all l
from 1 to N by A∗

d(N). By definition, A∗

d(N) is an affine subspace in
Rm×m, and monotonically shrinks with N . Since A∗

d(N) is an affine
ubspace for all N ≥ 1, each time A∗

d(N) shrinks, its dimension
ecreases. Thus, the sequence of sets A∗

d(N) must converge at
 finite N∗ since the dimension of A∗

d(N) can decrease at most
initely many times. Since F ∈ F∗(τj,N∗), there exists at least one
∈ Rm×m such that eAτj ∈ A∗

d(N
∗). This matrix A satisfies (28) for

all l ≥ 1.
Then, we pick an arbitrary x ∈ X . Since {xl}∞l=1 is dense in X ,

there exists a subsequence of xl, denoted by xl, that converges to
x. Since F (·) and ϕ(τj, ·) are continuous,
F (ϕ(τj, x)) = lim

l→∞

F (ϕ(τj, xl))

= lim
l→∞

eAτjF (xl)

Aτj

(29)
= e F (x).
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We pick an arbitrary t > 0. Since τj is positive and converging
o zero (recall that τj ∈ (0, 2−j

]), there exists a sequence kj with
kj ∈ N such that the sequence t̄j :=

∑j
i=0 ki · τi converges to t as

j goes to infinity. Note that for all j, (29) implies that

F (ϕ(t̄j, x)) = eAt̄jF (x). (30)

By the continuity of F (·) and ϕ(·, x), we have

F (ϕ(t, x)) = F (ϕ( lim
j→∞

t̄j, x))

= lim
j→∞

F (ϕ(t̄j, x))

= lim
j→∞

eAt̄jF (x) = eAtF (x). (31)

Since x and t are arbitrary, (31) implies that F is a linear
mmersion. □

Now, we state the main result of this section.

Theorem 2. Let {xl}∞l=1 be a dense subset of X . Let F be a continuous
unction such that F (Ω1) ̸ = F (Ω2) for someΩ1 andΩ2 ∈ W+. Then,
there exists t∗ > 0 such that for each sampling time τ ∈ (0, t∗],
there exists an N > 0 such that F ̸ ∈ F∗(τ ,N).

Proof. Let F be a continuous function that does not map every
Ω ∈ W+ to the same subset of Rm. According to Theorem 1, since
T2) and (T3) hold, F is not a linear immersion of the system.
y the contrapositive of Proposition 1, for any F not a linear
mmersion, there exists t > 0 such that for all τ ∈ (0, t] and
or some large enough N , F is not in F∗(τ ,N). □

Theorem 2 reveals that any immersion candidate F that can
istinguish at least two ω-limit sets in X would always be ruled
ut from F(τ ,N) by a small enough sampling time τ and a large

enough sample size N . This is particularly the case for common
algorithms that learn Koopman embeddings using a continuous
parameterization, such as polynomials (Williams et al., 2015) and
eep neural networks (Yeung, Kundu, & Hodas, 2019). Hence,
hese algorithms will suffer from the issues identified in this
section as long as they try to minimize the cost in (26) and
chieve zero fitting error.

Remark 7. Using similar arguments in the proof of Proposition 1,
ne can also show that for any positive time sequence τj that
onverges to zero, we have

lim sup
j→∞

lim
N→∞

F∗(τj,N) ⊆ C(W+), (32)

where C(W+) is the set of functions F ∈ C(X ,Rm) such that
(Ω1) = F (Ω2) for any Ω1 and Ω2 ∈ W+.

Remark 8. The condition of sampled states {xl}∞l=1 being dense
n X in Proposition 1 indicates that the data collection process
is conducted in a way such that the domain X of interest is
thoroughly covered by the sampled states in the limit. This con-
dition is relatively straightforward to meet. For instance, consider
a Borel probability measure µ over X such that any open subset
of X is not measure zero. By repeatedly drawing random initial
states according to µ, simulating trajectories for a finite time
horizon, and extracting state pairs (xl, x+

l ) from these trajectories,
the resulting samples {xl}∞l=1 is dense in X almost surely.

5. Extensions of the main theorem

Due to the condition (T2), Theorem 1 cannot be directly ap-
plied for systems with diverging trajectories in X . In this section,
we show several extensions to Theorem 1 that accommodate
ystems with diverging trajectories.
8

5.1. Indirect extensions of Theorem 1

The following two propositions, in conjunction with Theorem 1
show the non-existence of one-to-one linear immersions even
hen a diverging trajectory is present. We refer to these propo-
itions as ‘‘indirect extensions’’ to Theorem 1 because they must
be utilized in conjunction with it.

Proposition 2. If F : X → Z is an immersion of the system
ẋ = f (x) over X , then F is an immersion over any forward invariant
subset of X .

The proof of Proposition 2 is straightforward and omitted for
revity. By Proposition 2, if we show there is no one-to-one linear

immersion over a forward invariant subdomain of X , that implies
a one-to-one linear immersion does not exist over X .

Proposition 3. Suppose that X ′
⊆ X is forward invariant for the

time-reversed system ẋ = −f (x). If F immerses the system ẋ = f (x)
over X into ż = g(z) over Z , then the same F also immerses the
time-reversed system ẋ = −f (x) over X ′ into ż = −g(z) over F (X ′).

Proof. We want to show that the time-reversed system ẋ =

−f (x) over X ′ is immersed into ż = −g(z) by F , which is
equivalent to show that F (ϕ(−t, ξ )) = ψ(−t, F (ξ )) for all ξ ∈ X ′

and for all t ≥ 0.
Pick an arbitrary ξ ∈ X ′. Since X ′ is forward invariant for

ẋ = −f (x), ϕ(−t, ξ ) is well-defined for all t ≥ 0. We denote
ξ := {ϕ(−t, ξ ) | t ∈ R≥0} ⊆ X ′. We pick any x ∈ Xξ . There

exists τ (x) ≤ 0 such that x = ϕ(τ (x), ξ ). Since F is an immersion
over X and x ∈ X , we have for all t ≥ 0,

F (ϕ(t, x)) = ψ(t, F (x)). (33)

Thus, F (ξ ) = F (ϕ(−τ (x), x)) = ψ(−τ (x), F (x)). Since ϕ(t, x) =

ϕ(t + τ (x), ξ ), by (33),
F (ϕ(t + τ (x), ξ )) = ψ(t, F (x))

= ψ(t + τ (x), ψ(−τ (x), F (x)))
= ψ(t + τ (x), F (ξ )).

(34)

Let t = 0. Then (34) implies F (ϕ(τ (x), ξ )) = ψ(τ (x), F (ξ )). By
definition of Xξ and the uniqueness of the solution of ẋ = f (x),
for all t ≤ 0, there exists x ∈ Xξ such that τ (x) = t . Thus, for all
t ≥ 0, we have

F (ϕ(−t, ξ )) = ψ(−t, F (ξ )). (35)

Thus, the solution ψ(−t, F (ξ )) of ż = −g(z) is well defined and
equal to F (ϕ(−t, ξ )) for all t ≥ 0. □

By Proposition 3, if we can show that a one-to-one linear
immersion does not exist for the time-reversed system ẋ = −f (x)
over a forward-invariant subdomain of X , then there is no one-
to-one linear immersion for the original system ẋ = f (x) over X .
The following example demonstrates how to extend our results to
systems with diverging trajectories by combining the above two
propositions with Theorem 1.

Example 11. Consider a system in R2 with the phase portrait
shown in Fig. 6(a). The system has three ω-limit sets {−1, 0, 1},
here −1 and 1 are unstable equilibria and 0 is a saddle point.
e want to show that there is no one-to-one linear immersion

F of this system over X = R2. To achieve this goal, we cannot
irectly apply Corollary 3 since any trajectory starting outside

[−1, 1] × {0} is not precompact. However, by applying Theorem 1
to the forward-invariant subdomain X ′

= [−1, 0] × {0} (or
[0, 1] × {0}) of X , we know that there is no one-to-one linear
immersion over X ′. Then, by Proposition 2, no one-to-one linear
immersion exists over X .
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Fig. 6. Phase portraits of the system in Example 11 and its time-reversed
ounterpart.

To make this example more challenging, consider X =
2
\ ((−1,−0.5) ∪ (0.5, 1)) × {0}. Note that our previous ar-

ument does not work anymore since any forward invariant
′
⊆ X contains at least one trajectory that is not precompact.

ow consider the time-reversed system, shown by the phase
ortrait in Fig. 6(b). Since X is not forward invariant for the
ime-reversed system, we take the forward invariant subset X ′

=
2
\ ((−1, 0) ∪ (0, 1))× {0} of X . Since all trajectories of the time-

reversed systems in X ′ are precompact, Corollary 3 implies that
here is no one-to-one linear immersion for the time-reversed
ystem over X ′. Then, by Proposition 3, we know there is no
one-to-one linear immersion for the original system over X .

5.2. A direct extension of Theorem 1

While Propositions 2 and 3 allow us to apply Theorem 1 to
ystems with diverging trajectories, identifying the appropriate
ubdomain X ′ for more complex examples can be challenging.
n this section, we present a direct extension to Theorem 1,
here we replace the original condition (T2) with a weaker con-
ition. Before delving into this extension, we introduce several

key definitions.
For a system ẋ = f (x) defined over X , let X ′ be the set of

states ξ ∈ X such that ϕ(−t, ξ ) is defined and contained in X for
all t ≥ 0 (Namely X ′ is the largest backward invariant subset of
X with respect to the system). Given an initial state ξ ∈ X , the
trajectory ϕ(t, ξ ) from ξ is called backward precompact in X if

∈ X ′ and the trajectory from ξ is precompact in X with respect
o the time-reversed system ẋ = −f (x).

For each initial state ξ ∈ X , the ω-limit set of ξ in X with
respect to the time-reversed system ẋ = −f (x) is denoted by
ω−(ξ ). If ξ ̸ ∈ X ′, we define ω−(ξ ) = ∅. The set ω−(ξ ) is known as
an α-limit set of the original system ẋ = f (x) (Hirsch et al., 2012).
For any subset Γ of X , its domain of attraction with respect to
the time-reversed system is denoted by D−(Γ ). We denote the
set of all nonempty α-limit sets in X by W−. Similar to W+, the
et W− contains all the equilibria and closed orbits in X , and thus
ypically the intersection of W+ and W− is not empty. Now we
are ready to present the extension of Theorem 1:

Theorem 3. Suppose that:

(T1’) ẋ = f (x) on X is immersed in a system ż = g(z) on Z
by a continuous mapping F , where both ż = g(z) and its
time-reversed counterpart ż = −g(z) have closed basins;

(T2’) every trajectory of ẋ = f (x) on X is either precompact or
backward precompact in X ;

(T3’) the set W+
∪ W− is countable.

Then, the set {F (Ω) | Ω ∈ W+
∪ W−

} has exactly one maximal
lement, that is, there existsΩ ∈ W+

∪W− such that F (Ω) ⊇ F (Ω ′)
or all Ω ′ in W+

∪ W−.
If in addition to (T1’)–(T3’), we also have:
9

(T4’) For every Ω+
∈ W+ and Ω−

∈ W−, there exist at least
one precompact trajectory in D+(Ω+) and one backward
precompact trajectory in D−(Ω−),

then the set {F (Ω) | Ω ∈ W+
∪ W−

} has exactly one element, that
s F (Ω1) = F (Ω2) for any Ω1 and Ω2 in W+

∪ W−.

The proof of Theorem 3 is similar to that of Theorem 1, and can
be found in Appendix B. Under conditions (T1’)–(T3’), Theorem 3
says that any continuous immersion F cannot fully distinguish
different limit sets in X . Compared with Theorem 1, (T2’) is re-
laxed to allow diverging trajectories, as long as these trajectories
converge to some limit sets (such as an unstable equilibrium)
backward in time. At the same time, Theorem 3 requires that the
time-reversed system ż = −g(z) also has closed basins, which is
rivially satisfied by any linear system.

Example 12. Consider the same system in Example 11 and X =

R2
\ ((−1,−0.5) ∪ (0.5, 1)) × {0}. Since (T2’)–(T4’) in Theorem 3

are satisfied, any linear immersion over X collapses the three
quilibria into one. Therefore, no one-to-one linear immersions
xist over this specific X . Compared with the indirect exten-

sions of Theorem 1, Theorem 3 is directly applied to show the
non-existence of linear immersions, without constructing the
subdomain X ′ as in Example 11.

6. Conclusion

In this work, we first show that linear immersions collapse
different ω-limit sets into one under the condition that (i) all
trajectories in X are precompact and (ii) there are at most count-
ably many ω-limit sets. Then we bridge our theoretical findings
on exact linear immersions with approximate linear immersions
learned from data. We show that as the size of the data set
increases and the sampling interval decreases, the learned linear
immersion converges to functions incapable of distinguishing
different ω-limit sets. To extend the applicability of our results
beyond the constraints of precompact trajectories, we have also
presented several extensions to the main theorem. These exten-
sions broaden the scope of our results, allowing us to address
systems with diverging trajectories. For future work, we are in-
terested in the effect of multiple ω-limit sets on the approxima-
tion error of Koopman-based projected models (Haseli & Cortés,
2023), which is well-defined even if a linear immersion does not
xist.
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Appendix A. Proof of the main theorem

To prove Theorem 1, we first need to introduce two lemmas.
Recall that by Remark 2, an immersion is assumed to be continu-
ous unless otherwise specified. The first lemma reveals a relation
etween ω-limit sets of the original system and the immersed
ystem.

Lemma 3. Let F be an immersion that maps ẋ = f (x) on X to
ż = g(z) on Z . For any ξ ∈ X , if ω+(ξ ) is nonempty, then ω+(F (ξ ))
exists and contains F (ω+(ξ )). Furthermore, if the trajectory starting
from ξ is precompact in X , F (ω+(ξ )) = ω+(F (ξ )).
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Proof. We first prove that F (ω+(ξ )) ⊆ ω+(F (ξ )). Indeed, suppose
hat p ∈ ω+(ξ ), and pick a sequence of times ti → ∞ so that
(ti, ξ ) → p as ti → ∞. Therefore ψ(ti, F (ξ )) = F (ϕ(ti, ξ )) →

q := F (p), showing that q ∈ ω+(F (ξ )).
Conversely, suppose that q′

∈ ω+(F (ξ )), and pick a sequence
of times ti → ∞ so that F (ϕ(ti, ξ )) = ψ(ti, F (ξ )) → q′

∈ Z
as ti → ∞. Since the trajectory ϕ(t, ξ ) is precompact in X ,
there is a subsequence of the ti’s, which is again denoted by
ti without loss of generality, so that ϕ(ti, ξ ) → p ∈ X and
hus ψ(ti, F (ξ )) = F (ϕ(ti, ξ )) → q := F (p). Since we picked a
subsequence, also ψ(ti, F (ξ )) = F (ϕ(ti, ξ )) → q′. We conclude
that q′

= q ∈ F (ω+(ξ )), showing that ω+(F (ξ )) ⊆ F (ω+(ξ )). We
conclude that F (ω+(ξ )) = ω+(F (ξ )). □

Remark 9. Under condition (T2) in Theorem 1, for any Ω ∈ W+,
he image Ω̂ := F (Ω) is an ω-limit set for the system ż = g(z).
Indeed, by definition there is some ξ ∈ X such that ω+(ξ ) = Ω .
hus, from Lemma 3 we have that Ω̂ = F (Ω) = F (ω+(ξ )) =

ω+(F (ξ )).

Next, observe that, in general, F (D+(Ω)) ̸ = D+(F (Ω)), since
the latter set could be larger. Examples are easy to construct by
taking X to be a forward-invariant subset of Z and F the identity.
For example, consider ẋ = −x on X = (−1, 1) and the same
system ż = −z on Z = R. Here Ω = {0} is the only ω-limit set,
and F (D+(Ω)) = D+(Ω) = (−1, 1) but D+(F (Ω)) = R. However,
the following weaker statement is true.

Lemma 4. Suppose that F is an immersion. For any ξ ∈ X , if ϕ(t, ξ )
s precompact in X , then F (D+(ω+(ξ ))) ⊆ D+(F (ω+(ξ ))).

Proof. Since ϕ(t, ξ ) is precompact in X , by Lemmas 1 and 3,
:= ω+(ξ ) is nonempty and F (Ω) = ω+(F (ξ )). Let x be a

oint in D+(Ω). Then, there exists a sequence tn ≥ 0 such that
tn → +∞ and ϕ(tn, x) → x′ for some x′

∈ Ω . By (3) and the
ontinuity of F , limn→+∞ ψ(tn, F (x)) = limn→+∞ F (ϕ(tn, x)) =

F (x′) ∈ F (Ω) = ω+(F (ξ )). Hence, F (x) ∈ D+(ω+(F (ξ ))) and
thereby F (D+(ω+(ξ ))) ⊆ D+(F (ω+(ξ ))). □

Proof of Theorem 1. Since by (T2) every trajectory is precompact
n X and by (T3) there are at most countably many ω-limit sets
n X , we have that X =

⋃
i∈I D

+(Ωi), for a countable set I . Thus,
(X ) =

⋃
i∈I F (D

+(Ωi)). By (T2) and Lemmas 3 and 4, F (Ωi) is an
-limit set for all i ∈ I and

F (X ) =

⋃
i∈I

(
D+(F (Ωi)) ∩ F (X )

)
. (A.1)

According (T1), D+(F (Ωi)) is closed in Z and thus D+(F (Ωi))∩F (X )
is closed in the subspace topology induced on F (X ) for all i ∈ I .
oreover, D+(F (Ωi))∩ F (X ) for all i ∈ I is nonempty since points

in F (Ωi) are limit points of D+(F (Ωi)) and thus contained in the
closed set D+(F (Ωi)) ∩ F (X ).

Finally, since the domains of attraction of two different ω-
limit sets must be disjoint, for any indices i and i′ ∈ I , we have
either (a) the two ω-limit sets F (Ωi) and F (Ωi′ ) of the immersed
system are equal, which implies D+(F (Ωi)) = D+(F (Ωi′ )); or (b)
D+(F (Ωi)) and D+(F (Ωi′ )) are disjoint.

Suppose there exist i and i′ such that case (b) holds, that
s, D+(F (Ωi)) and D+(F (Ωi′ )) are disjoint. It follows from (A.1)
that F (X ) is a disjoint union of a countable collection of closed
ets. Since X is path-connected and F is continuous, F (X ) is
path-connected as well. Thus, by the main theorem of Sierpiński
(1918), only one of the sets in the collection {D+(F (Ωi))∩F (X )}i∈I
an be nonempty. This contradicts our earlier proof that D+(F (Ωi))
F (X ) is nonempty for all i ∈ I . Thus by contradiction, F (Ωi) must

e the same for all i ∈ I . □
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Remark 10. Sierpiński’s Theorem states that if a continuum X
has a countable cover {Xi}

∞

i=1 by pairwise disjoint closed subsets,
then at most one of the sets Xi is non-empty. A continuum is a
compact connected Hausdorff space, but we do not assume that X
is compact. However, the theorem is still true if X is not compact.
Indeed, suppose that two of the sets Xi would be nonempty, and
pick two points p, q, one in each set. Consider a (continuous) path
γ : [0, 1] → X that joins these two points, and let Γ := γ ([0, 1]).
Now the sets {Xi ∩ Γ }

∞

i=1 form a disjoint cover of the continuum
Γ , but two of these sets are nonempty, a contradiction.

Appendix B. Proof of Theorem 3

Recall that the definitions of backward precompact trajecto-
ies, α-limit sets, and their domains of attraction are provided
n Section 5.2. We first show a property of systems with closed
basins.

Lemma 5. Suppose that both the original system ẋ = f (x) and
he time-reversed system ẋ = −f (x) have closed basins. Then, for
ny ω-limit set Ω ⊆ X and α-limit set Γ ⊆ X of ẋ = f (x),
+(Ω) ∩ D−(Γ ) ̸ = ∅ implies Ω = Γ .

Proof. Let x0 ∈ D+(Ω) ∩ D−(Γ ). That is, ω+(x0) = Ω and
ω−(x0) = Γ . Denote the trajectory through x0 by X0 = {ψ(t, x0) |

t ∈ R}. Then, by the definition of limit sets, ω+(x) = Ω and
ω−(x) = Γ imply that (i) X0 is contained by D+(Ω) ∩ D−(Γ ) and
(ii) the closure cl(X0) contains Ω∪Γ . Since D+(Ω) and D−(Γ ) are
closed, we have

Ω ∪ Γ ⊆ cl(X0) ⊆ D+(Ω) ∩ D−(Γ ).
Thus, we have Ω ⊆ D−(Γ ) and Γ ⊆ D+(Ω). Next, it can be

hown that any limit set is closed and invariant in X (Alligood
et al., 1996). Since Ω is invariant and Ω ⊆ D−(Γ ), we have
Γ ⊆ cl(Ω) = Ω . Similarly, we have Ω ⊆ cl(Γ ) = Γ . Thus,
Ω = Γ . □

Next, we extend Lemmas 3 and 4 for α-limit sets.

Lemma 6. Let F be an immersion that maps ẋ = f (x) on X to
ż = g(z) on Z . For any ξ ∈ X , if ω−(ξ ) exists, then ω−(F (ξ )) exists
and contains F (ω−(ξ )). Furthermore, if the trajectory starting at ξ is
backward precompact in X , F (ω−(ξ )) = ω−(F (ξ )).

Proof. Let X ′ be the maximal forward invariant subset of X
with respect to the time-reversed system. By Proposition 3, F
s an immersion that maps ẋ = −f (x) on X ′ to ż = −g(z) on
F (X ′). Then, the proof is completed by applying Lemma 3 to the
time-reversed system ẋ = −f (x) on X ′ and the immersion F . □

Lemma 7. Let F be an immersion that maps ẋ = f (x) on X to a
ystem ż = g(z) on Z . For any ξ ∈ X , if ϕ(t, ξ ) is precompact in X ,
hen

F (D+(ω+(ξ ))) ⊆ D+(F (ω+(ξ ))),

and if ϕ(t, ξ ) is backward precompact in X , then

F (D−(ω−(ξ ))) ⊆ D−(F (ω−(ξ ))).

Proof. The inclusion relation when ϕ(t, ξ ) is precompact in X is
irectly implied by Lemma 4 . The inclusion relation when ϕ(t, ξ )

is backward precompact in X can be shown via similar arguments
in the proof of Lemma 4 with Lemma 1, Lemma 6, and (35). □

The following lemma is a key component in the proof of
Theorem 3.
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Lemma 8. Let Ŵ+ be the set of ω-limit sets Ω in W+ whose
omain of attraction D+(Ω) contains at least one trajectory pre-
ompact in X , and let Ŵ− be the set of α-limit sets Γ in W−

hose domain of attraction D−(Γ ) contains at least one trajectory
ackward precompact in X . Then, under (T1’)–(T3’), the images F (Ω)
nd F (Ω ′) are the same for any Ω and Ω ′ in Ŵ+

∪ Ŵ−.

Proof. For any limit set Ω ∈ Ŵ+
∪ Ŵ−, let us define

D(Ω) =

⎧⎨⎩
D+(Ω) Ω ∈ Ŵ+

\Ŵ−

D−(Ω) Ω ∈ Ŵ−
\Ŵ+

D+(Ω) ∪ D−(Ω) Ω ∈ Ŵ−
∩ Ŵ+,

(B.1)

F (Ω) =

⎧⎨⎩
D+(F (Ω)) Ω ∈ Ŵ+

\Ŵ−

D−(F (Ω)) Ω ∈ Ŵ−
\Ŵ+

D+(F (Ω)) ∪ D−(F (Ω)) Ω ∈ Ŵ−
∩ Ŵ+.

Now, we show that for any Ω, Ω ′
∈ Ŵ+

∪ Ŵ− such that
F (Ω) ̸ = F (Ω ′), DF (Ω) and DF (Ω ′) must be disjoint.

Assume that F (Ω) ̸ = F (Ω ′). Immediately, we have
D+(F (Ω)) ∩ D+(F (Ω ′)) = ∅,

−(F (Ω)) ∩ D−(F (Ω ′)) = ∅,
+(F (Ω)) ∩ D−(F (Ω ′)) = ∅,
−(F (Ω)) ∩ D+(F (Ω ′)) = ∅,

(B.2)

where the first two equations hold by the definition of domain
of attraction, and the last two equations hold due to (T1’) and
Lemma 5. By (B.1) and (B.2), if F (Ω) ̸ = F (Ω ′), DF (Ω) and DF (Ω ′)
must be disjoint.

Now we are ready to show that F (Ω) = F (Ω ′) for all Ω, Ω ′
∈

Ŵ+
∪ Ŵ− under conditions (T1’)–(T3’).

Since by (T2’), for any ξ ∈ X , the corresponding trajectory is
either precompact or backward precompact in X , by Lemma 1,
ny ξ ∈ X must belong to D(Ω) for some Ω ∈ Ŵ+

∪ Ŵ−. Thus,
he set X = ∪i∈ID(Ωi) for a countable set I , where {Ωi}i∈I =ˆ+

∪Ŵ−. As a result, F (X ) = ∪i∈IF (D(Ωi)). By Lemma 7, F (D(Ωi))
is contained by DF (Ωi). Thus,

F (X ) =

⋃
i∈I

(DF (Ωi) ∩ F (X )). (B.3)

By (T1’), DF (Ωi)∩F (X ) is closed in the subspace topology induced
y F (X ) for all i ∈ I . Moreover, the set DF (Ωi)∩F (X ) is nonempty

for all i ∈ I since points in F (Ωi) are limit points of DF (Ωi) and
thus contained in the closed set DF (Ωi) (as both ż = g(z) and
ż = −g(z) have closed basins).

Now suppose that F (Ωi) and F (Ωj) are not equal for some
i and j in I . Then, DF (Ωi) and DF (Ωj) are nonempty and dis-
joint, and thus (B.3) implies that F (X ) is a disjoint union of a
ountable collection of closed sets. Since X is path-connected
nd F is continuous, F (X ) is path-connected. Thus, by the main
heorem of Sierpiński (1918), only one of the sets in the collection
DF (Ωk) ∩ F (X )}k∈I can be nonempty. This contradicts our earlier
roof that DF (Ωi) ∩ F (X ) and DF (Ωj) ∩ F (X ) are disjoint and
onempty. Thus, by contradiction, the sets F (Ωk) must be the
ame for all k ∈ I . That is, F (Ω) is the same set for all Ω ∈

Ŵ+
∪ Ŵ−. □

Proof of Theorem 3. Recall under (T1’)–(T3’), we want to show
that there exists Ωmax ∈ W+

∪ W− such that F (Ωmax) ⊇ F (Ω)
for any Ω ∈ W+

∪ W−. Note that (T2’) and Lemmas 3 and 6
imply that Ŵ+

∪ Ŵ− is nonempty. Let Ωmax be any element in
he nonempty set Ŵ+

∪ Ŵ−. For any Ω ∈ W+
∪ W−, we show

(Ω) ⊆ F (Ω ) by considering three cases:
max

11
Case 1: Ω ∈ Ŵ+
∪ Ŵ−. By Lemma 8, F (Ω) = F (Ωmax).

Case 2: Ω ∈ W+
\(Ŵ+

∪ Ŵ−). Pick any ξ ∈ D+(Ω). Since Ω ̸ ∈ˆ+, the solution of ξ cannot be precompact in X , and thus must
e backward precompact by (T2’). Thus, by Lemma 1, ω−(ξ ) exists

and belongs to Ŵ−. By Lemmas 6 and 8, F (ω−(ξ )) = ω−(F (ξ )) =

F (Ωmax). By Lemma 3, ω+(F (ξ )) is nonempty and contains F (Ω).
Finally, by Lemma 5 and (T1’), we have ω+(F (ξ )) = ω−(F (ξ )).
Therefore, we have

F (Ω) ⊆ ω+(F (ξ )) = ω−(F (ξ )) = F (Ωmax). (B.4)

Case 3: Ω ∈ W−
\(Ŵ+

∪ Ŵ−). By arguments similar to Case 2, it
an be shown that F (Ω) ⊆ F (Ωmax).
So far, we have shown that under conditions (T1’)–(T3’), F (Ω)

⊆ F (Ωmax) for any Ω ∈ W+
∪W−. Finally, note that (T4’) implies

W+
= Ŵ+ and W−

= Ŵ−, and thus for any Ω ∈ W+
∪ W−,

(Ω) = F (Ωmax) by Lemma 8. □

References

Alligood, K. T., Sauer, T. D., & Yorke, J. A. (1996). Chaos: An Introduction to
Dynamical Systems (1st ed.). Springer.

Arathoon, P., & Kvalheim, M. D. (2023). Koopman embedding and super-
linearization counterexamples with isolated equilibria. arXiv preprint arXiv:
2306.15126.

Bakker, C., Nowak, K. E., & Rosenthal, W. S. (2019). Learning koopman operators
for systems with isolated critical points. In 2019 IEEE 58th conference on
decision and control (pp. 7733–7739). IEEE.

Bakker, C., Ramachandran, T., & Rosenthal, W. S. (2020). Learning bounded
Koopman observables: Results on stability, continuity, and controllability.
arXiv preprint arXiv:2004.14921.

Bruder, D., Fu, X., Gillespie, R. B., Remy, C. D., & Vasudevan, R. (2020). Data-driven
control of soft robots using Koopman operator theory. IEEE Transactions on
Robotics, 37(3), 948–961.

Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E., & Kutz, J. N. (2017). Chaos
as an intermittently forced linear system. Nature Communications, 8(1), 1–9.

Brunton, S. L., Brunton, B. W., Proctor, J. L., & Kutz, J. N. (2016). Koopman
invariant subspaces and finite linear representations of nonlinear dynamical
systems for control. PloS One, 11(2), Article e0150171.

Brunton, S. L., Budišić, M., Kaiser, E., & Kutz, J. N. (2021). Modern Koopman
theory for dynamical systems. arXiv preprint arXiv:2102.12086.

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equa-
tions from data by sparse identification of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 113(15), 3932–3937.

Grüne, L., Sontag, E. D., & Wirth, F. R. (1999). Asymptotic stability equals
exponential stability, and ISS equals finite energy gain—if you twist your
eyes. Systems & Control Letters, 38(2), 127–134.

Haseli, M., & Cortés, J. (2023). Invariance proximity: Closed-form error bounds for
finite-dimensional Koopman-based models. arXiv preprint arXiv:2311.13033.

Hirsch, M. W., Smale, S., & Devaney, R. L. (2012). Differential equations, dynamical
systems, and an introduction to chaos. Academic Press.

Koopman, B. O. (1931). Hamiltonian systems and transformation in Hilbert space.
Proceedings of the National Academy of Sciences, 17(5), 315–318.

Korda, M., & Mezić, I. (2018). Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93, 149–160.

Kutz, N. J., Proctor, J. L., & Brunton, S. L. (2018). Applied Koopman theory for
partial differential equations and data-driven modeling of spatio-temporal
systems. Complexity, 2018.

Kvalheim, M. D., & Arathoon, P. (2023). Linearizability of flows by embeddings.
arXiv preprint arXiv:2305.18288.

Lan, Y., & Mezić, I. (2013). Linearization in the large of nonlinear systems and
Koopman operator spectrum. Physica D: Nonlinear Phenomena, 242(1), 42–53.

Lee, J. M. (2012). Introduction to Smooth Manifolds. Springer.
Levine, J., & Marino, R. (1986). Nonlinear system immersion, observers and

finite-dimensional filters. Systems & Control Letters, 7(2), 133–142.
Liu, Z., Ozay, N., & Sontag, E. D. (2023). On the non-existence of immersions for

systems with multiple omega-limit sets. IFAC-PapersOnLine, 56(2), 60–64.
Lo, J. T.-H. (1975). Global bilinearization of systems with control appearing

linearly. SIAM Journal on Control, 13(4), 879–885.
Mauroy, A., & Mezić, I. (2013). A spectral operator-theoretic framework for global

stability. In 52nd IEEE conference on decision and control (pp. 5234–5239).
IEEE.

Mauroy, A., Susuki, Y., & Mezić, I. (2020). Koopman operator in systems and
control. Springer.

http://refhub.elsevier.com/S0005-1098(25)00118-9/sb1
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb1
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb1
http://arxiv.org/abs/2306.15126
http://arxiv.org/abs/2306.15126
http://arxiv.org/abs/2306.15126
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb3
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb3
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb3
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb3
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb3
http://arxiv.org/abs/2004.14921
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb5
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb5
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb5
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb5
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb5
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb6
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb6
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb6
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb7
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb7
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb7
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb7
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb7
http://arxiv.org/abs/2102.12086
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb9
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb9
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb9
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb9
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb9
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb10
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb10
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb10
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb10
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb10
http://arxiv.org/abs/2311.13033
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb12
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb12
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb12
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb13
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb13
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb13
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb14
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb14
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb14
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb15
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb15
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb15
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb15
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb15
http://arxiv.org/abs/2305.18288
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb17
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb17
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb17
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb18
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb19
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb19
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb19
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb20
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb20
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb20
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb21
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb21
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb21
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb22
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb22
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb22
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb22
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb22
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb23
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb23
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb23


Z. Liu, N. Ozay and E.D. Sontag Automatica 176 (2025) 112226

i
a

Page, J., & Kerswell, R. R. (2019). Koopman mode expansions between simple
invariant solutions. Journal of Fluid Mechanics, 879, 1–27.

Peitz, S., & Klus, S. (2020). Feedback control of nonlinear PDEs using data-
efficient reduced order models based on the Koopman operator. The Koopman
Operator in Systems and Control: Concepts, Methodologies, and Applications,
257–282.

Sierpiński, W. (1918). Un théoreme sur les continus. Tohoku Mathematical Journal,
First Series, 13, 300–303.

Sontag, E. D. (1979). On the observability of polynomial systems. I. Finite-time
problems. SIAM Journal on Control and Optimization, 17(1), 139–151.

Sontag, E. D. (1995a). Spaces of observables in nonlinear control. In Proceedings
of the international congress of mathematicians, vol. 1, 2 (zürich, 1994) (pp.
1532–1545). Basel: Birkhüser.

Sontag, E. D. (1995b). Spaces of observables in nonlinear control. In Proceedings
of the international congress of mathematicians: August 3–11, 1994 zürich,
Switzerland (pp. 1532–1545). Springer.

Sontag, E. D. (1998). Mathematical control theory. Deterministic finite-
dimensional systems, Texts in applied mathematics: vol. 6, (Second). (p.
xvi+531). New York: Springer-Verlag.

Sontag, E. D., & Rouchaleau, Y. (1976). On discrete-time polynomial systems.
Nonlinear Analysis. Theory, Methods & Applications, 1(1), 55–64.

Tu, J. H., Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., & Kutz, J. N.
(2014). On dynamic mode decomposition: Theory and applications. Journal
of Computational Dynamics, 1(2), 391–421.

Van Den Essen, A. (1994). Locally finite and locally nilpotent derivations with
applications to polynomial flows, morphisms and Ga-actions. II. Proceedings
of the American Mathematical Society, 121(3), 667–678.

Wang, Y., & Sontag, E. D. (1989). On two definitions of observation spaces.
Systems & Control Letters, 13(4), 279–289. http://dx.doi.org/10.1016/0167-
6911(89)90116-3.

Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data–driven approx-
imation of the Koopman operator: Extending dynamic mode decomposition.
Journal of Nonlinear Science, 25(6), 1307–1346.

Yamamoto, Y. (1981). Realization theory of infinite-dimensional linear systems,
parts I and II.. Math. Syst. Theory, 15, 55–77 and 169–190.

Yeung, E., Kundu, S., & Hodas, N. (2019). Learning deep neural network repre-
sentations for Koopman operators of nonlinear dynamical systems. In 2019
American control conference (pp. 4832–4839). IEEE.

Zexiang Liu earned his B.S. degree in Engineering from
Shanghai Jiao Tong University, Shanghai, China, in 2016.
He went onto to complete his M.S. and Ph.D. degrees
in Electrical and Computer Engineering from University
of Michigan, Ann Arbor, MI, USA, in 2018 and 2024
respectively.

His current research interests lie in formal syn-
thesis and verification for safety-critical systems, safe
autonomy, and system identification.
12
Necmiye Ozay (Senior Member, IEEE) received the B.S.
degree from Bogazici University, Istanbul in 2004, the
M.S. degree from the Pennsylvania State University,
University Park in 2006, and the Ph.D. degree from
Northeastern University, Boston in 2010, all in electrical
engineering. Between 2010 and 2013, she was a post-
doctoral scholar at California Institute of Technology,
Pasadena. She joined the University of Michigan, Ann
Arbor in 2013, where she is currently the Chen-Luan
Family Faculty Development Professor of Electrical and
Computer Engineering, and an Associate Professor of

Electrical Engineering and Computer Science, and of Robotics. Her research
nterests include dynamical systems, control, optimization, formal methods with
pplications in cyber–physical systems, system identification, verification and

validation, and safe autonomy.
Prof. Ozay has been the program chair for several conferences in the

areas of hybrid and cyber–physical systems including HSCC, ADHS, and ICCPS.
She serves on the editorial boards of the journals Discrete Event Dynamic
Systems, Nonlinear Analysis: Hybrid Systems, and Automatica. Her contributions
to research and teaching have been recognized by multiple awards including five
young investigator awards from US funding agencies, the 1938E Award and a
Henry Russel Award from the University of Michigan, and Antonio Ruberti Prize
from the IEEE Control System Society

Eduardo D. Sontag received his Licenciado in Mathe-
matics at the University of Buenos Aires (1972) and a
Ph.D. in Mathematics (1977) under Rudolf E. Kalman
at the University of Florida. From 1977 to 2017, he
was at Rutgers University, where he was a Distin-
guished Professor of Mathematics and a Member of
the Graduate Faculty of the Departments of Computer
Science of Electrical and Computer Engineering and the
Cancer Institute of NJ. He directed the undergraduate
Biomathematics Interdisciplinary Major and the Center
for Quantitative Biology, and was Graduate Director

at the Institute for Quantitative Biomedicine. In January 2018, Dr. Sontag
became a University Distinguished Professor in the Departments of Electrical
and Computer Engineering and of BioEngineering at Northeastern University,
where he is also affiliated with the Mathematics and the Chemical Engineering
departments. Since 2006, he has been a Research Affiliate at the Laboratory for
Information and Decision Systems, MIT, and since 2018 he has been the Faculty
Member in the Program in Therapeutic Science at Harvard Medical School.
His major current research interests lie in several areas of machine learning,
control and dynamical systems theory, systems molecular biology, cancer and
immunology, and computational biology. Sontag has authored over five hundred
research papers and monographs and book chapters in the above areas with over
63,000 citations and an h-index of 107 (52 since 2020). He is a Fellow of various
professional societies: IEEE, AMS, SIAM, and IFAC, and is also a member of SMB
and BMES. He was awarded the Reid Prize in Mathematics in 2001, the 2002
Hendrik W. Bode Lecture Prize and the 2011 Control Systems Field Award from
the IEEE, the 2022 Richard E. Bellman Control Heritage Award, the 2023 IFAC
Triennial Award on Nonlinear Control the 2002 Board of Trustees Award for
Excellence in Research from Rutgers, and the 2005 Teacher/Scholar Award from
Rutgers. In 2024, he was elected to the American Academy of Arts and Sciences.

http://refhub.elsevier.com/S0005-1098(25)00118-9/sb24
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb24
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb24
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb25
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb25
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb25
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb25
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb25
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb25
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb25
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb26
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb26
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb26
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb27
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb27
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb27
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb28
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb28
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb28
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb28
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb28
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb29
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb29
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb29
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb29
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb29
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb30
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb30
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb30
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb30
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb30
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb31
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb31
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb31
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb32
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb32
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb32
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb32
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb32
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb33
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb33
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb33
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb33
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb33
http://dx.doi.org/10.1016/0167-6911(89)90116-3
http://dx.doi.org/10.1016/0167-6911(89)90116-3
http://dx.doi.org/10.1016/0167-6911(89)90116-3
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb35
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb35
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb35
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb35
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb35
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb36
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb36
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb36
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb37
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb37
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb37
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb37
http://refhub.elsevier.com/S0005-1098(25)00118-9/sb37

	Properties of immersions for systems with multiple limit sets with implications to learning Koopman embeddings
	Introduction
	Preliminaries
	Problem Statement
	Technical Definitions

	Main Theorem
	Implication for Learning Linear Immersions from Data
	Extensions of the Main Theorem
	Indirect Extensions of Theorem 1 
	A Direct Extension of Theorem 1 

	Conclusion
	Acknowledgments
	Appendix A. Proof of the Main Theorem
	Appendix B. Proof of Theorem 3 
	References


