BACK TO INDEX

Publications about 'transcription'
Articles in journal or book chapters
  1. Z. An, M.A. Al-Radhawi, W. Cho, and E.D. Sontag. Inferring causal connections through embedded physics-informed neural networks (ePINNs): An application to synthetic biology resource competition. 2024. Note: In preparation.
    Abstract:
    Biological systems have been widely studied as complex dynamic systems that evolve with time in response to the internal resources abundance and external perturbations due to their common features. Integration of systems and synthetic biology provides a consolidated framework that draws system-level connections among biology, mathematics, engineering, and computer sciences. One major problem in current synthetic biology research is designing and controlling the synthetic circuits to perform reliable and robust behaviors as they utilize common transcription and translational resources among the circuits and host cells. While cellular resources are often limited, this results in a competition for resources by different genes and circuits, which affect the behaviors of synthetic genetic circuits. The manner competition impacts behavior depends on the “bottleneck” resource. With knowledge of physics laws and underlying mechanisms, the dynamical behaviors of the synthetic circuits can be described by the first principle models, usually represented by a system of ordinary differential equations (ODEs). In this work, we develop the novel embedded PINN (ePINN), which is composed of two nested loss-sharing neural networks to target and improve the unknown dynamics prediction from quantitative time series data. We apply the ePINN approach to identify the mathematical structures of competition phenotypes. Firstly, we use the PINNs approach to infer the model parameters and hidden dynamics from partially known data (including a lack of understanding of the reaction mechanisms or missing experimental data). Secondly, we test how well the algorithms can distinguish and extract the unknown dynamics from noisy data. Thirdly, we study how the synthetic and competing circuits behave in various cases when different particles become a limited resource.


  2. M.A. Al-Radhawi, S. Tripathi, Y. Zhang, E.D. Sontag, and H. Levine. Epigenetic factor competition reshapes the EMT landscape. Proc Natl Acad Sci USA, 119:e2210844119, 2022. [WWW] [PDF] Keyword(s): gene networks, Epithelial-Mesenchymal Transition, EMT, epigenetics, systems biology, cancer.
    Abstract:
    The emergence of and transitions between distinct phenotypes in isogenic cells can be attributed to the intricate interplay of epigenetic marks, external signals, and gene regulatory elements. These elements include chromatin remodelers, histone modifiers, transcription factors, and regulatory RNAs. Mathematical models known as Gene Regulatory Networks (GRNs) are an increasingly important tool to unravel the workings of such complex networks. In such models, epigenetic factors are usually proposed to act on the chromatin regions directly involved in the expression of relevant genes. However, it has been well-established that these factors operate globally and compete with each other for targets genome-wide. Therefore, a perturbation of the activity of a regulator can redistribute epigenetic marks across the genome and modulate the levels of competing regulators. In this paper, we propose a conceptual and mathematical modeling framework that incorporates both local and global competition effects between antagonistic epigenetic regulators in addition to local transcription factors, and show the counter-intuitive consequences of such interactions. We apply our approach to recent experimental findings on the Epithelial-Mesenchymal Transition (EMT). We show that it can explain the puzzling experimental data as well provide new verifiable predictions.


  3. T. Chen, M. A. Al-Radhawi, C.A. Voigt, and E.D. Sontag. A synthetic distributed genetic multi-bit counter. iScience, 24:103526, 2021. [PDF] Keyword(s): counters, synthetic biology, transcriptional networks, gene networks, boolean circuits, boolean gates, systems biology.
    Abstract:
    A design for genetically-encoded counters is proposed via repressor-based circuits. An N-bit counter reads sequences of input pulses and displays the total number of pulses, modulo $2^N$. The design is based on distributed computation, with specialized cell types allocated to specific tasks. This allows scalability and bypasses constraints on the maximal number of circuit genes per cell due to toxicity or failures due to resource limitations. The design starts with a single-bit counter. The N-bit counter is then obtained by interconnecting (using diffusible chemicals) a set of N single-bit counters and connector modules. An optimization framework is used to determine appropriate gate parameters and to compute bounds on admissible pulse widths and relaxation (inter-pulse) times, as well as to guide the construction of novel gates. This work can be viewed as a step toward obtaining circuits that are capable of finite-automaton computation, in analogy to digital central processing units.


  4. D.K. Agrawal, E.M. Dolan, N.E. Hernandez, K.M. Blacklock, S.D. Khare, and E.D. Sontag. Mathematical models of protease-based enzymatic biosensors. ACS Synthetic Biology, 9:198-208, 2020. [PDF] Keyword(s): synthetic biology, protease-based circuits, enzymatic circuits, systems biology, Boolean circuits.
    Abstract:
    An important goal of synthetic biology is to build biosensors and circuits with well-defined input-output relationships that operate at speeds found in natural biological systems. However, for molecular computation, most commonly used genetic circuit elements typically involve several steps from input detection to output signal production: transcription, translation, and post-translational modifications. These multiple steps together require up to several hours to respond to a single stimulus, and this limits the overall speed and complexity of genetic circuits. To address this gap, molecular frameworks that rely exclusively on post-translational steps to realize reaction networks that can process inputs at a time scale of seconds to minutes have been proposed. Here, we build mathematical models of fast biosensors capable of producing Boolean logic functionality. We employ protease-based chemical and light-induced switches, investigate their operation, and provide selection guidelines for their use as on-off switches. As a proof of concept, we implement a rapamycin-induced switch in vitro and demonstrate that its response qualitatively agrees with the predictions from our models. We then use these switches as elementary blocks, developing models for biosensors that can perform OR and XOR Boolean logic computation while using reaction conditions as tuning parameters. We use sensitivity analysis to determine the time-dependent sensitivity of the output to proteolytic and protein-protein binding reaction parameters. These fast protease-based biosensors can be used to implement complex molecular circuits with a capability of processing multiple inputs controllably and algorithmically. Our framework for evaluating and optimizing circuit performance can be applied to other molecular logic circuits.


  5. M.A. Al-Radhawi, D. Angeli, and E.D. Sontag. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks. PLoS Computational Biology, pp 16(2): e1007681, 2020. [PDF] Keyword(s): MAPK cascades, Lyapunov functions, stability, chemical networks, chemical rection networks, systems biology, RFM, ribosome flow model.
    Abstract:
    This paper deals with the analysis of the dynamics of chemical reaction networks, developing a theoretical framework based only on graphical knowledge and applying regardless of the particular form of kinetics. This paper introduces a class of networks that are "structurally (mono) attractive", by which we mean that they are incapable of exhibiting multiple steady states, oscillation, or chaos by the virtue of their reaction graphs. These networks are characterized by the existence of a universal energy-like function which we call a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear systems is introduced, which form the extremals of a linear convex cone. The problem is then reduced to that of finding a common Lyapunov function for this set of extremals. Based on this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction Networks (LEARN), is provided that constructs such functions or rules out their existence. An extensive study of biochemical networks demonstrates that LEARN offers a new unified framework. We study basic motifs, three-body binding, and transcriptional networks. We focus on cellular signalling networks including various post-translational modification cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading, ERK signaling, and the Ribosome Flow Model.


  6. M.A. Al-Radhawi, A.P. Tran, E. Ernst, T. Chen, C.A. Voigt, and E.D. Sontag. Distributed implementation of Boolean functions by transcriptional synthetic circuits. ACS Synthetic Biology, 9:2172-2187, 2020. [PDF] [doi:10.1021/acssynbio.0c00228] Keyword(s): synthetic biology, transcriptional networks, gene networks, boolean circuits, boolean gates, systems biology.
    Abstract:
    Starting in the early 2000s, sophisticated technologies have been developed for the rational construction of synthetic genetic networks that implement specified logical functionalities. Despite impressive progress, however, the scaling necessary in order to achieve greater computational power has been hampered by many constraints, including repressor toxicity and the lack of large sets of mutually-orthogonal repressors. As a consequence, a typical circuit contains no more than roughly seven repressor-based gates per cell. A possible way around this scalability problem is to distribute the computation among multiple cell types, which communicate among themselves using diffusible small molecules (DSMs) and each of which implements a small sub-circuit. Examples of DSMs are those employed by quorum sensing systems in bacteria. This paper focuses on systematic ways to implement this distributed approach, in the context of the evaluation of arbitrary Boolean functions. The unique characteristics of genetic circuits and the properties of DSMs require the development of new Boolean synthesis methods, distinct from those classically used in electronic circuit design. In this work, we propose a fast algorithm to synthesize distributed realizations for any Boolean function, under constraints on the number of gates per cell and the number of orthogonal DSMs. The method is based on an exact synthesis algorithm to find the minimal circuit per cell, which in turn allows us to build an extensive database of Boolean functions up to a given number of inputs. For concreteness, we will specifically focus on circuits of up to 4 inputs, which might represent, for example, two chemical inducers and two light inputs at different frequencies. Our method shows that, with a constraint of no more than seven gates per cell, the use of a single DSM increases the total number of realizable circuits by at least 7.58-fold compared to centralized computation. Moreover, when allowing two DSM's, one can realize 99.995\% of all possible 4-input Boolean functions, still with at most 7 gates per cell. The methodology introduced here can be readily adapted to complement recent genetic circuit design automation software.


  7. T. Chen, M.A. Al-Radhawi, and E.D. Sontag. A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Epigenetics, 15:1-22, 2020. Note: PMID: 32842865. [PDF] [doi:10.1080/15592294.2020.1805686] Keyword(s): methylation, differentiation, epigenetics, pluripotent cells, gene regulatory networks, bistability, bistability, systems biology.
    Abstract:
    Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation, with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The ``Basin of Attraction percentage'' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that methylation plays in enhancing the stability of the silenced gene state.


  8. D.K. Agrawal, R. Marshall, V. Noireaux, and E.D. Sontag. In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller. Nature Communications, 10:1-12, 2019. [PDF] Keyword(s): tracking, synthetic biology, integral feedback, TX/TL, systems biology, dynamical systems, adaptation, internal model principle, identifiability.
    Abstract:
    Cells respond to biochemical and physical internal as well as external signals. These signals can be broadly classified into two categories: (a) ``actionable'' or ``reference'' inputs that should elicit appropriate biological or physical responses such as gene expression or motility, and (b) ``disturbances'' or ``perturbations'' that should be ignored or actively filtered-out. These disturbances might be exogenous, such as binding of nonspecific ligands, or endogenous, such as variations in enzyme concentrations or gene copy numbers. In this context, the term robustness describes the capability to produce appropriate responses to reference inputs while at the same time being insensitive to disturbances. These two objectives often conflict with each other and require delicate design trade-offs. Indeed, natural biological systems use complicated and still poorly understood control strategies in order to finely balance the goals of responsiveness and robustness. A better understanding of such natural strategies remains an important scientific goal in itself and will play a role in the construction of synthetic circuits for therapeutic and biosensing applications. A prototype problem in robustly responding to inputs is that of ``robust tracking'', defined by the requirement that some designated internal quantity (for example, the level of expression of a reporter protein) should faithfully follow an input signal while being insensitive to an appropriate class of perturbations. Control theory predicts that a certain type of motif, called integral feedback, will help achieve this goal, and this motif is, in fact, a necessary feature of any system that exhibits robust tracking. Indeed, integral feedback has always been a key component of electrical and mechanical control systems, at least since the 18th century when James Watt employed the centrifugal governor to regulate steam engines. Motivated by this knowledge, biological engineers have proposed various designs for biomolecular integral feedback control mechanisms. However, practical and quantitatively predictable implementations have proved challenging, in part due to the difficulty in obtaining accurate models of transcription, translation, and resource competition in living cells, and the stochasticity inherent in cellular reactions. These challenges prevent first-principles rational design and parameter optimization. In this work, we exploit the versatility of an Escherichia coli cell-free transcription-translation (TXTL) to accurately design, model and then build, a synthetic biomolecular integral controller that precisely controls the expression of a target gene. To our knowledge, this is the first design of a functioning gene network that achieves the goal of making gene expression track an externally imposed reference level, achieves this goal even in the presence of disturbances, and whose performance quantitatively agrees with mathematical predictions.


  9. E.V. Nikolaev, A. Zloza, and E.D. Sontag. Immunobiochemical reconstruction of influenza lung infection - melanoma skin cancer interactions. Frontiers in Immunology, 10:Article 4, 2019. [PDF] Keyword(s): oncology, cancer, infections, immunology, checkpoint inhibition, systems biology.
    Abstract:
    Recent experimental results from the Zloza lab combined a mouse model of influenza A virus (IAV) infection (A/H1N1/PR8) and a highly aggressive model of infection-unrelated cancer, B16-F10 skin melanoma. This paper showed that acute influenza infection of the lung promotes distal melanoma growth in the dermis of the flank and leads to decreased host survival. Here, we proceed to ground the experimental observations in a mechanistic immunobiochemical model that incorporates the T cell receptor signaling pathway, various transcription factors, and a gene regulatory network (GRN). A core component of our model is a biochemical motif, which we call a Triple Incoherent Feed-Forward Loop (TIFFL), and which reflects known interactions between IRF4, Blimp-1, and Bcl-6. The different activity levels of the TIFFL components, as a function of the cognate antigen levels and the given inflammation context, manifest themselves in phenotypically distinct outcomes. Specifically, both the TIFFL reconstruction and quantitative estimates obtained from the model allowed us to formulate a hypothesis that it is the loss of the fundamental TIFFL-induced adaptation of the expression of PD-1 receptors on anti-melanoma CD8+ T cells that constitutes the essence of the previously unrecognized immunologic factor that promotes the experimentally observed distal tumor growth in the presence of acute non-ocogenic infection. We therefore hope that this work can further highlight the importance of adaptive mechanisms by which immune functions contribute to the balance between self and non-self immune tolerance, adaptive resistance, and the strength of TCR-induced activation, thus contributing to the understanding of a broader complexity of fundamental interactions between pathogens and tumors.


  10. T.H. Segall-Shapiro, E. D. Sontag, and C. A. Voigt. Engineered promoters enable constant gene expression at any copy number in bacteria. Nature Biotechnology, 36:352-358, 2018. [PDF] Keyword(s): synthetic biology, systems biology, genetic circuits, gene copy number, incoherent feedforward loop, feedforward, IFFL.
    Abstract:
    This paper deals with the design of promoters that maintain constant levels of expression, whether they are carried at single copy in the genome or on high-copy plasmids. The design is based on an incoherent feedforward loop (iFFL) with a perfectly non-cooperative repression. The circuits are implemented in E. coli using Transcription Activator Like Effectors (TALEs). The resulting stabilized promoters generate near identical expression across different genome locations and plasmid backbones (pSC101, p15a, ColE1, pUC), and also provide robustness to strain mutations and growth media. Further, their strength is tunable and can be used to maintain constant ratios between proteins.


  11. V. H. Nagaraj, J. M. Greene, A. M. Sengupta, and E.D. Sontag. Translation inhibition and resource balance in the TX-TL cell-free gene expression system. Synthetic Biology, 2:ysx005, 2017. [PDF] Keyword(s): tx/tl, cell-free systems, in vitro synthetic biology, synthetic biology, systems biology.
    Abstract:
    Utilizing the synthetic transcription-translation (TX-TL) system, this paper studies the impact of nucleotide triphosphates (NTPs) and magnesium (Mg2+), on gene expression, in the context of the counterintuitive phenomenon of suppression of gene expression at high NTP concentration. Measuring translation rates for different Mg2+ and NTP concentrations, we observe a complex resource dependence. We demonstrate that translation is the rate-limiting process that is directly inhibited by high NTP concentrations. Additional Mg2+ can partially reverse this inhibition. In several experiments, we observe two maxima of the translation rate viewed as a function of both Mg2+ and NTP concentration, which can be explained in terms of an NTP-independent effect on the ribosome complex and an NTP- Mg2+ titration effect. The non-trivial compensatory effects of abundance of different vital resources signals the presence of complex regulatory mechanisms to achieve optimal gene expression.


  12. T.H. Segall-Shapiro, A.J. Meyer, A.D. Ellington, E.D. Sontag, and C.A. Voigt. A `resource allocator' for transcription based on a highly fragmented T7 RNA polymerase. Molecular Systems Biology, 10:742-, 2014. [WWW] [PDF] Keyword(s): systems biology, synthetic biology, gene expression.
    Abstract:
    A transcriptional system is built based on a 'resource allocator' that sets a core RNAP concentration, which is then shared by multiple sigma fragments, which provide specificity. Adjusting the concentration of the core sets the maximum transcriptional capacity available to a synthetic system.


  13. V. Shimoga, J.T. White, Y. Li, E.D. Sontag, and L. Bleris. Synthetic mammalian transgene negative autoregulation. Molecular Systems Biology, 9:670-, 2013. [PDF] Keyword(s): systems biology, synthetic biology, gene expression.
    Abstract:
    Using synthetic circuits stably integrated in human kidney cells, we study the effect of negative feedback regulation on cell-wide (extrinsic) and gene-specific (intrinsic) sources of uncertainty. We develop a theoretical approach to extract the two noise components from experiments and show that negative feedback reduces extrinsic noise while marginally increasing intrinsic noise, resulting to significant total noise reduction. We compare the results to simple negative regulation, where a constitutively transcribed transcription factor represses a reporter protein. We observe that the control architecture also reduces the extrinsic noise but results in substantially higher intrinsic fluctuations. We conclude that negative feedback is the most efficient way to mitigate the effects of extrinsic fluctuations by a sole regulatory wiring.


  14. R. Albert, B. DasGupta, R. Hegde, G.S. Sivanathan, A. Gitter, G. Grsoy, P. Paul, and E.D. Sontag. A new computationally efficient measure of topological redundancy of biological and social networks. Physical Review E, 84:036117, 2011. [PDF]
    Abstract:
    In this paper, we introduce a topological redundancy measure for labeled directed networks that is formal, computationally efficient and applicable to a variety of directed networks such as cellular signaling, metabolic and social interaction networks. We demonstrate the computational efficiency of our measure by computing its value and statistical significance on a number of biological and social networks with up to several thousands of nodes and edges. Our results suggest a number of interesting observations: (1) social networks are more redundant that their biological counterparts, (2) transcriptional networks are less redundant than signaling networks, (3) the topological redundancy of the C. elegans metabolic network is largely due to its inclusion of currency metabolites, and (4) the redundancy of signaling networks is highly (negatively) correlated with monotonicity of their dynamics.


  15. L. Bleris, Z. Xie, D. Glass, A. Adadey, E.D. Sontag, and Y. Benenson. Synthetic incoherent feed-forward circuits show adaptation to the amount of their genetic template. Molecular Systems Biology, 7:519-, 2011. [PDF] Keyword(s): adaptation, feedforward loops, systems biology, synthetic biology, incoherent feedforward loop, feedforward, IFFL.
    Abstract:
    Natural and synthetic biological networks must function reliably in the face of fluctuating stoichiometry of their molecular components. These fluctuations are caused in part by changes in relative expression efficiency and the DNA template amount of the network-coding genes. Gene product levels could potentially be decoupled from these changes via built-in adaptation mechanisms, thereby boosting network reliability. Here we show that a mechanism based on an incoherent feed-forward motif enables adaptive gene expression in mammalian cells. We modeled, synthesized, and tested transcriptional and post-transcriptional incoherent loops and found that in all cases the gene product adapts to changes in DNA template abundance. We also observed that the post-transcriptional form results in superior adaptation behavior, higher absolute expression levels, and lower intrinsic fluctuations. Our results support a previously-hypothesized endogenous role in gene dosage compensation for such motifs and suggest that their incorporation in synthetic networks will improve their robustness and reliability.


  16. A.C. Jiang, A. C. Ventura, E. D. Sontag, S. D. Merajver, A. J. Ninfa, and D. Del Vecchio. Load-induced modulation of signal transduction networks. Science Signaling, 4, issue 194:ra67, 2011. [PDF] Keyword(s): systems biology, reaction networks, synthetic biology, futile cycles, singular perturbations, modularity.
    Abstract:
    Biological signal transduction networks are commonly viewed as circuits that pass along in the process amplifying signals, enhancing sensitivity, or performing other signal-processing to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a its ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets


  17. G. Russo, M. di Bernardo, and E.D. Sontag. Global entrainment of transcriptional systems to periodic inputs. PLoS Computational Biology, 6:e1000739, 2010. [PDF] Keyword(s): contractive systems, contractions, systems biology, reaction networks, gene and protein networks.
    Abstract:
    This paper addresses the problem of giving conditions for transcriptional systems to be globally entrained to external periodic inputs. By using contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all solutions converge to fixed limit cycles. General results are proved, and the properties are verified in the specific case of some models of transcriptional systems.


  18. T. Riley, X. Yu, E.D. Sontag, and A. Levine. The P53HMM algorithm: using novel profile Hidden Markov Models to detect p53-responsive genes. BMC Bioinformatics, 10:111, 2009. [PDF] [doi:10.1186/1471-2105-10-111] Keyword(s): Hidden Markov Models, p53, transcription factors.
    Abstract:
    A novel computational method (called p53HMM) is presented that utilizes Profile Hidden Markov Models (PHMM's) to estimate the relative binding affinities of putative p53 response elements (RE's), both p53 single-sites and cluster-sites. These models incorporate a novel ``Correlated Baum Welch'' training algorithm that provides increased predictive power by exploiting the redundancy of information found in the repeated, palindromic p53-binding motif. The predictive accuracy of these new models are compared against other predictive models, including position specic score matrices (PSSM's, or weight matrices). Finally, we provide experimental evidence that verifies a predicted p53-target site that regu- lates the CHMP4C gene. The P53HMM algorithm is available on-line from http://tools.csb.ias.edu.


  19. D. Angeli and E.D. Sontag. Oscillations in I/O monotone systems. IEEE Transactions on Circuits and Systems, Special Issue on Systems Biology, 55:166-176, 2008. Note: Preprint version in arXiv q-bio.QM/0701018, 14 Jan 2007. [PDF] Keyword(s): monotone systems, hopf bifurcations, circadian rhythms, tridiagonal systems, nonlinear dynamics, systems biology, reaction networks, oscillations, periodic behavior, delay-differential systems.
    Abstract:
    In this note, we show how certain properties of Goldbeter's 1995 model for circadian oscillations can be proved mathematically, using techniques from the recently developed theory of monotone systems with inputs and outputs. The theory establishes global asymptotic stability, and in particular no oscillations, if the rate of transcription is somewhat smaller than that assumed by Goldbeter, based on the application of a tight small gain condition. This stability persists even under arbitrary delays in the feedback loop. On the other hand, when the condition is violated a Poincare'-Bendixson result allows to conclude existence of oscillations, for sufficiently high delays.


  20. D. Del Vecchio, A.J. Ninfa, and E.D. Sontag. Modular Cell Biology: Retroactivity and Insulation. Molecular Systems Biology, 4:161, 2008. [PDF] Keyword(s): retroactivity, systems biology, reaction networks, synthetic biology, futile cycles, singular perturbations, modularity.
    Abstract:
    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input/output dynamic characteristics of transcriptional components, focusing on a property, which we call "retroactivity," that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter binding sites, or when the affinity of such binding sites is high. In order to attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation/dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast time scales of the phosphorylation and dephosphorylation reactions. Such a mechanism, when viewed as a signal transduction system, has thus an inherent capacity to provide insulation and hence to increase the modularity of the system in which it is placed.


  21. T. Riley, E.D. Sontag, P. Chen, and A. Levine. The transcriptional regulation of human p53-regulated genes. Nature Reviews Molecular Cell Biology, 9:402-412, 2008. [PDF] Keyword(s): Hidden Markov Models, p53, transcription.
    Abstract:
    The p53 protein regulates the transcription of many different genes in response to a wide variety of stress signals. Following DNA damage, p53 regulates key processes, including DNA repair, cell-cycle arrest, senescence and apoptosis, in order to suppress cancer. This Analysis article provides an overview of the current knowledge of p53-regulated genes in these pathways and others, and the mechanisms of their regulation. In addition, we present the most comprehensive list so far of human p53-regulated genes and their experimentally validated, functional binding sites that confer p53 regulation.


  22. E.D. Sontag. Network reconstruction based on steady-state data. Essays in Biochemistry, 45:161-176, 2008. [PDF] Keyword(s): modular response analysis, systems biology, reaction networks, reverse engineering, gene and protein networks, protein networks, gene networks, systems identification, MAPK cascades.
    Abstract:
    The ``reverse engineering problem'' in systems biology is that of unraveling of the web of interactions among the components of protein and gene regulatory networks, so as to map out the direct or local interactions among components. These direct interactions capture the topology of the functional network. An intrinsic difficulty in capturing these direct interactions, at least in intact cells, is that any perturbation to a particular gene or signaling component may rapidly propagate throughout the network, thus causing global changes which cannot be easily distinguished from direct effects. Thus, a major goal in reverse engineering is to use these observed global responses - such as steady-state changes in concentrations of active proteins, mRNA levels, or transcription rates - in order to infer the local interactions between individual nodes. One approach to solving this global-to-local problem is the ``Modular Response Analysis'' (MRA) method proposed in work of the author with Kholodenko et. al. (PNAS, 2002) and further elaborated in other papers. The basic method deals only with steady-state data. However, recently, quasi-steady state MRA has been used by Santos et. al. (Nature Cell Biology, 2007) for quantifying positive and negative feedback effects in the Raf/Mek/Erk MAPK network in rat adrenal pheochromocytoma (PC-12) cells. This paper presents an overview of the MRA technique, as well as a generalization of the algorithm to that quasi-steady state case.


  23. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E.D. Sontag, A. Zelikovsky, and K. Westbrooks. A novel method for signal transduction network inference from indirect experimental evidence. Journal of Computational Biology, 14:927-949, 2007. [PDF] Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.
    Abstract:
    This paper introduces a new method of combined synthesis and inference of biological signal transduction networks. The main idea lies in representing observed causal relationships as network paths, and using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. The paper formalizes the approach, studies its computational complexity, proves new results for exact and approximate solutions of the computationally hard transitive reduction substep of the approach, validates the biological applicability by applying it to a previously published signal transduction network by Li et al., and shows that the algorithm for the transitive reduction substep performs well on graphs with a structure similar to those observed in transcriptional regulatory and signal transduction networks.


Conference articles
  1. M. Ali Al-Radhawi, K. Manoj, D. Jatkar, A. Duvall, D. Del Vecchio, and E.D. Sontag. Competition for binding targets results in paradoxical effects for simultaneous activator and repressor action. In Proc. 63rd IEEE Conference on Decision and Control (CDC), 2024. Note: To appear. Preprint in arXiv.[PDF] Keyword(s): resource competition, epigenetics, systems biology, synthetic biology, gene regulatory systems.
    Abstract:
    In the context of epigenetic transformations in cancer metastasis, a puzzling effect was recently discovered, in which the elimination (knock-out) of an activating regulatory element leads to increased (rather than decreased) activity of the element being regulated. It has been postulated that this paradoxical behavior can be explained by activating and repressing transcription factors competing for binding to other possible targets. It is very difficult to prove this hypothesis in mammalian cells, due to the large number of potential players and the complexity of endogenous intracellular regulatory networks. Instead, this paper analyzes this issue through an analogous synthetic biology construct which aims to reproduce the paradoxical behavior using standard bacterial gene expression networks. The paper first reviews the motivating cancer biology work, and then describes a proposed synthetic construct. A mathematical model is formulated, and basic properties of uniqueness of steady states and convergence to equilibria are established, as well as an identification of parameter regimes which should lead to observing such paradoxical phenomena (more activator leads to less activity at steady state). A proof is also given to show that this is a steady-state property, and for initial transients the phenomenon will not be observed. This work adds to the general line of work of resource competition in synthetic circuits.


  2. S. Bruno, M.A. Al-Radhawi, E.D. Sontag, and D. Del Vecchio. Stochastic analysis of genetic feedback controllers to reprogram a pluripotency gene regulatory network. In Proc. 2019 Automatic Control Conference, pages 5089-5096, 2019. [PDF] Keyword(s): multistability, reaction networks, systems biology, stochastic systems, cell differentiation, multistationarity, chemical master equations.
    Abstract:
    Cellular reprogramming is traditionally accomplished through an open loop control approach, wherein key transcription factors are injected in cells to steer a gene regulatory network toward a pluripotent state. Recently, a closed loop feedback control strategy was proposed in order to achieve more accurate control. Previous analyses of the controller were based on deterministic models, ignoring the substantial stochasticity in these networks, Here we analyze the Chemical Master Equation for reaction models with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when analyzed using a stochastic model.


  3. D. Del Vecchio, A.J. Ninfa, and E.D. Sontag. A Systems Theory with Retroactivity: Application to Transcriptional Modules. In Proceedings of the 2008 American Control Conference, Seattle, June 2008, pages Paper WeC04.1, 2008. [PDF] Keyword(s): retroactivity, systems biology, reaction networks, synthetic biology, futile cycles, singular perturbations, modularity.


  4. D. Angeli and E.D. Sontag. An analysis of a circadian model using the small-gain approach to monotone systems. In Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, Dec. 2004, IEEE Publications, pages 575-578, 2004. [PDF] Keyword(s): circadian rhythms, tridiagonal systems, nonlinear dynamics, systems biology, reaction networks, oscillations, periodic behavior, monotone systems, delay-differential systems.
    Abstract:
    We show how certain properties of Goldbeter's original 1995 model for circadian oscillations can be proved mathematically. We establish global asymptotic stability, and in particular no oscillations, if the rate of transcription is somewhat smaller than that assumed by Goldbeter, but, on the other hand, this stability persists even under arbitrary delays in the feedback loop. We are mainly interested in illustrating certain mathematical techniques, including the use of theorems concerning tridiagonal cooperative systems and the recently developed theory of monotone systems with inputs and outputs.


Internal reports
  1. T. Chen, M. A. Al-Radhawi, and E. D. Sontag. A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Technical report, Cold Spring Harbor Laboratory, 2019. Note: BioRxiv preprint 10.1101/2019.12.19.883280. Keyword(s): Cell-fate networks, gene regulatory networks, DNA methylation, epigenetic regulation, pluripotent stem cell circuit.
    Abstract:
    Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation, with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The ``Basin of Attraction percentage'' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that methylation plays in enhancing the stability of the silenced gene state.


  2. J. Barton and E.D. Sontag. Remarks on the energy costs of insulators in enzymatic cascades. Technical report, http://arxiv.org/abs/1412.8065, December 2014. [PDF] Keyword(s): retroactivity, systems biology, reaction networks, futile cycles, singular perturbations, modularity.
    Abstract:
    The connection between optimal biological function and energy use, measured for example by the rate of metabolite consumption, is a current topic of interest in the systems biology literature which has been explored in several different contexts. In [J. P. Barton and E. D. Sontag, Biophys. J. 104, 6 (2013)], we related the metabolic cost of enzymatic futile cycles with their capacity to act as insulators which facilitate modular interconnections in biochemical networks. There we analyzed a simple model system in which a signal molecule regulates the transcription of one or more target proteins by interacting with their promoters. In this note, we consider the case of a protein with an active and an inactive form, and whose activation is controlled by the signal molecule. As in the original case, higher rates of energy consumption are required for better insulator performance.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:36 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html