BACK TO INDEX

Publications about 'linearization'
Articles in journal or book chapters
  1. A.C.B. de Oliveira, M. Siami, and E. D. Sontag. Regularising numerical extremals along singular arcs: a Lie-theoretic approach. In M.A. Belabbas, editor, Geometry and Topology in Control, Proceedings of BIRS Workshop. American Institute of Mathematical Sciences Press, 2025. Note: To appear.[PDF] Keyword(s): optimal control, nonlinear control, Lie algebras, robotics.
    Abstract:
    Numerical ``direct'' approaches to time-optimal control often fail to find solutions that are singular in the sense of the Pontryagin Maximum Principle. These approaches behave better when searching for saturated (bang-bang) solutions. In previous work by one of the authors, singular solutions were theoretically shown to exist for the time-optimal problem for two-link manipulators under hard torque constraints. The theoretical results gave explicit formulas, based on Lie theory, for singular segments of trajectories, but the global structure of solutions remains unknown. In this work, we show how to effectively combine these theoretically found formulas with the use of general-purpose optimal control softwares. By using the explicit formula given by theory in the intervals where the numerical solution enters a singular arcs, we not only obtain an algebraic expression for the control in that interval, but we are also able to remove artifacts present in the numerical solution. In this way, the best features of numerical algorithms and theory complement each other and provide a better picture of the global optimal structure. We showcase the technique on a 2 degrees of freedom robotic arm example, and also propose a way of extending the analyzed method to robotic arms with higher degrees of freedom through partial feedback linearization, assuming the desired task can be mostly performed by a few of the degrees of freedom of the robot and imposing some prespecified trajectory on the remaining joints.


  2. M. D. Kvalheim and E. D. Sontag. Global linearization without hyperbolicity. arXiv:2502.07708 [math.DS], 2025. Note: Submitted. [PDF] Keyword(s): linearization, Hartman-Grobman Theorem.
    Abstract:
    We give a proof of an extension of the Hartman-Grobman theorem to nonhyperbolic but asymptotically stable equilibria of vector fields. Moreover, the linearizing topological conjugacy is (i) defined on the entire basin of attraction if the vector field is complete, and (ii) a $C^{k\geq 1}$ diffeomorphism on the complement of the equilibrium if the vector field is $C^k$ and the underlying space is not $5$-dimensional. We also show that the $C^k$ statement in the $5$-dimensional case is equivalent to the $4$-dimensional smooth Poincar\'{e} conjecture.


  3. M. Skataric and E.D. Sontag. A characterization of scale invariant responses in enzymatic networks. PLoS Computational Biology, 8:e1002748, 2012. [PDF] Keyword(s): adaptation, biological adaptation, perfect adaptation, scale invariance, systems biology, transient behavior, symmetries, fcd, fold-change detection.
    Abstract:
    This paper studies a recently discovered remarkable feature that was shown in many adapting systems: scale invariance, which means that the initial, transient behavior stays approximately the same when the background signal level is scaled. Not every adapting system is scale-invariant: we investigate under which conditions a broadly used model of biochemical enzymatic networks will show scale invariant behavior. For all 3-node enzymatic networks, we performed a wide computational study to find candidates for scale invariance, among 16,038 possible topologies. This effort led us to discover a new necessary and sufficient mechanism that explains the behavior of all 3-node enzyme networks that have this property, which we call``uniform linearizations with fast output''. We also apply our theoretical results to a concrete biological example of order six, a model of the response of the chemotaxis signaling pathway of Dictyostelium discoideum to changes in chemoeffector cyclic adenosine monophosphate (cAMP).


  4. L. Wang, P. de Leenheer, and E.D. Sontag. Conditions for global stability of monotone tridiagonal systems with negative feedback. Systems and Control Letters, 59:138-130, 2010. [PDF] Keyword(s): systems biology, monotone systems, tridiagonal systems, global stability.
    Abstract:
    This paper studies monotone tridiagonal systems with negative feedback. These systems possess the Poincar{\'e}-Bendixson property, which implies that, if orbits are bounded, if there is a unique steady state and this unique equilibrium is asymptotically stable, and if one can rule out periodic orbits, then the steady state is globally asymptotically stable. Different approaches are discussed to rule out period orbits. One is based on direct linearization, while the other uses the theory of second additive compound matrices. Among the examples that will illustrate our main theoretical results is the classical Goldbeter model of circadian rhythms.


  5. W. Maass, P. Joshi, and E.D. Sontag. Computational aspects of feedback in neural circuits. PLoS Computational Biology, 3:e165 1-20, 2007. [PDF] Keyword(s): machine learning, neural networks, feedback linearization, computation by cortical microcircuits, fading memory.
    Abstract:
    It had previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate in this article the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise the resulting computational model can perform a large class of biologically relevant real-time computations that require a non-fading memory.


  6. M. Chaves and E.D. Sontag. Exact computation of amplification for a class of nonlinear systems arising from cellular signaling pathways. Automatica, 42:1987-1992, 2006. [PDF] Keyword(s): MAPK cascades, systems biology, reaction networks, nonlinear stability, dynamical systems.
    Abstract:
    A commonly employed measure of the signal amplification properties of an input/output system is its induced L2 norm, sometimes also known as H-infinity gain. In general, however, it is extremely difficult to compute the numerical value for this norm, or even to check that it is finite, unless the system being studied is linear. This paper describes a class of systems for which it is possible to reduce this computation to that of finding the norm of an associated linear system. In contrast to linearization approaches, a precise value, not an estimate, is obtained for the full nonlinear model. The class of systems that we study arose from the modeling of certain biological intracellular signaling cascades, but the results should be of wider applicability.


  7. A. Arapostathis, B. Jakubczyk, H.-G. Lee, S. I. Marcus, and E.D. Sontag. The effect of sampling on linear equivalence and feedback linearization. Systems Control Lett., 13(5):373-381, 1989. [PDF] [doi:http://dx.doi.org/10.1016/0167-6911(89)90103-5] Keyword(s): discrete-time, sampled-data systems, discrete-time systems, sampling.
    Abstract:
    We investigate the effect of sampling on linearization for continuous time systems. It is shown that the discretized system is linearizable by state coordinate change for an open set of sampling times if and only if the continuous time system is linearizable by state coordinate change. Also, it is shown that linearizability via digital feedback imposes highly nongeneric constraints on the structure of the plant, even if this is known to be linearizable with continuous-time feedback.


Conference articles
  1. B. Jakubczyk and E.D. Sontag. The effect of sampling on feedback linearization. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec.1987, pages 1374-1379, 1987.


  2. E.D. Sontag. Remarks on input/output linearization. In Proc. IEEE Conf. Dec. and Control, Las Vegas, Dec. 1984, pages 409-412, 1984. [PDF]
    Abstract:
    In the context of realization theory, conditions are given for the possibility of simulating a given discrete time system, using immersion and/or feedback, by linear or state-affine systems.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Apr 3 20:42:36 2025
Author: sontag.


This document was translated from BibTEX by bibtex2html