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Summary. Numerical “direct” approaches to time-optimal control often fail to
find solutions that are singular in the sense of the Pontryagin Maximum Principle,
behaving better when searching for saturated (bang-bang) solutions. In previous
work by one of the authors, singular solutions were shown to exist for the time-
optimal control problem for fully actuated mechanical systems under hard torque
constraints. Explicit formulas, based on a Lie theoretic analysis of the problem,
were given for singular segments of trajectories, but the global structure of solutions
remains unknown. In this work, we review the aforementioned framework, and show
how to effectively combine these formulas with the use of general-purpose optimal
control software packages. By using the explicit formula given by the theory in the
intervals where the numerical solution enters a singular arc, we not only obtain an
algebraic expression for the control in that interval, but we are also able to remove
artifacts present in the numerical solution. In this way, the best features of numerical
algorithms and theory complement each other and provide a better picture of the
global optimal structure. We illustrate the technique on a two degree of freedom
robotic arm example, using two distinct optimal control numerical software packages
running on different programming languages.

1.1 Introduction

Traditionally, one of the key problems in the control of robotic systems is that
of path planning, as evident by the multiple techniques formulated in the liter-
ature. Among those methods, collocation-based approaches show good results
for solving optimal control problems both in simulation and practical applica-
tions [1–5], providing approximately optimal trajectories to follow. Alterna-
tively, kinodynamic path planning approaches [6–8] have a large literature on
approximate or case-specific solutions for finding optimal trajectories [6–10].

While the class of optimal control problems is very diverse, a very impor-
tant type of problem, and of particular interest of this paper, is the minimum
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time point-to-point control problem. Its interest in the field of robotics is il-
lustrated, for example, in disaster scenarios, where it is essential to complete
tasks as rapidly as possible, or in industrial applications, where it means not
only making the most out of the invested parts, but also a direct increase in
production and efficiency. The interest in this type of optimal control prob-
lem is such that there is much work in the literature [11, 12] to cast the
time-optimal control problem in a solvable way for numerical algorithms in
general.

Complementary to optimal path planning, optimal trajectory tracking is
also important to guarantee that the resulting control law is optimal, or near
optimal, with works in the literature also focusing on the time-optimal aspect
of this problem. For example, in [13] the authors consider the time-optimal
control of manipulators across a pre-specified trajectory, looking at the max-
imum rate at which one can traverse it while still keeping the trajectory
admissible.

However, despite the vast literature on both path planning and trajectory
tracking, numerical methods for finding an optimal trajectory, can struggle to
recover the control signal whenever the switching function becomes singular,
also known as solutions with singularity arcs. In [5, 14] the authors develop
a way of identifying regions of the solution with singularity arcs and refining
the resulting controller from their collocation method, however in some cases,
numerical artifacts are still present on the recovered solution.

This paper explores a theoretical formulation for fixed start and endpoint
minimum time control of manipulators in the presence of singularity arcs. The
resulting controller is guaranteed to satisfy the Pontryagin Maximum Princi-
ple, which is a necessary condition for optimality and matches the trajectories
obtained by off-the-shelf optimal control software while giving a closed-form
solution for the control signals and avoiding numerical artifacts.

We base our method on theoretical work explored by one of the authors
[15, 16], and while the theoretical framework we use was already shown in
these previous publications, in this work we consolidate the results, provide
a different format for some of the proofs, and fix a few minor mistakes in
these previous works. Regardless, this theoretical approach leverages the Lie
algebraic structure of the system to guarantee that the generated trajectories
satisfy the Pontryagin Maximum Principle. After presenting some simulations
for a two-degree-of-freedom (2DOF) robotic arm model in which singularity
arcs appear in the optimal solution, we show how to use theory to regularize
the numerical solution.
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1.2 Theoretical Background

1.2.1 Fully Actuated Mechanical Systems and the Minimum-Time
Control Problem

We consider what is typically called a “fully actuated mechanical systems”
whose dynamics are given by

u(t) = M(q(t)) q̈(t) + C(q(t), q̇(t)) + G(q(t)) . (1.1)

Here the components of u : R+ → Rn, u(t) = [u1(t), ..., un(t)]
⊤ are seen

as inputs (forces and torques) and the components of the vector function
q : R+ → Rn are called the configuration variables of the system (linear
and angular displacements). The “inertia matrix” M(q) is a positive definite
matrix function for every q ∈ Q, Q being the set of admissible trajectories
of the system. To provide a more standard state-space form, we let x :=
[q⊤, q̇⊤]⊤ be the state vector of the system, and define L(q) := M−1(q).
Then the state-space equations of the system are given by[

q̇
q̈

]
︸︷︷︸
ẋ

=

[
q̇

−L(q)(C(q, q̇) +G(q))

]
︸ ︷︷ ︸

f(x)

+

[
0

L(q)

]
︸ ︷︷ ︸

g(x)

u. (1.2)

The problem of interest of this paper is as follows: given initial and final
desired configurations x0 and xf , and bounds on the components of the control
signal

Li ≤ ui(t) ≤Mi,

for constant Li,Mi ∈ R and ∀i ∈ N≤n, one wishes to find control functions
u∗(·) such that

φ(T, x0, u
∗) = xf

with the smallest possible T (where φ(t, ξ, u) is the solution at time t if the
initial condition is ξ and the input is u(·), assuming that a solution is well-
defined on [0, t]). This problem can be expressed as:

min
u∈M

T

s.t. ẋ(t) = f(x(t)) + g(x(t))u(t)
x(0) = xi
x(T ) = xf

(1.3)

where M is the set of measurable essentially bounded functions

u : [0, T ] → Rn

such that Li ≤ ui(t) ≤Mi for almost all t ∈ [0, T ].
Such an optimization problem is not always analytically solvable, or even

numerically solvable in a reasonable time. For this reason, numerical methods
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are often employed to search for approximately/near-optimal control strate-
gies. Knowledge of the theory behind such optimization problems can prove
very useful in understanding the obtained solution and even regularizing nu-
merical artifacts that might be present, as we argue in this paper.

In the next section, we look at what a solution for the time-optimal control
looks like and how we can use properties of our system to obtain algebraic
expressions for our control in cases where the trajectory has singular sections.

1.2.2 Extremals and the Maximum Principle

Candidate solutions of optimal control problems are obtained through the
Pontryagin Maximum Principle (PMP) [17,18]. Define the Hamiltonian asso-
ciated to problem (1.3) as

H(x, u, λ) := ⟨λ, (f(x) + g(x)u)⟩ − 1 (1.4)

where λ : R+ → R2n is called the costate of the system and follows the adjoint
dynamics defined as

λ̇ = −
〈
∂

∂x
(f(x) + g(x)u), λ

〉
. (1.5)

Let I = [0, T ], T > 0, x∗ : I → R2n, and u∗ : I → M0 where

M0 := {[u1, . . . , un]⊤ ∈ Rn | Li ≤ ui ≤Mi, ∀i = 1, . . . , n}

and such that (x∗, u∗) satisfy (1.2). The Pontryagin Maximum Principle, then,
states that if (x∗, u∗) solves the minimum-time control problem for x0 = x∗(0)
and xf = x∗(T ), then there exist some λ∗ : I → R2n, λ∗(t) ̸= 0, that satisfies
(1.5), such that (x∗, u∗, λ∗) satisfies

H(x∗, u∗, λ∗) = max
a∈M0

H(x∗, a, λ∗). (1.6)

(Observe that asking λ∗(t̄) ̸= 0 for some t̄ is equivalent to asking λ∗(t) ̸= 0
for all t ≤ t̄, because the equation for λ∗ is linear.) Any tuple (x∗, u∗, λ∗)
that satisfies the maximum principle is called an extremal of the system.
Furthermore, notice that because of the particular structure of our system,
we can define

∂H

∂ui
(x(t), λ(t)) = ⟨λ(t), gi(x(t))⟩ = ϕi(t) (1.7)

and conclude from (1.6) that ui(t) =Mi if ϕi(t) > 0 and ui(t) = Li if ϕ(t) < 0.
The function ϕi is commonly called the switching function associated with the
input ui. If a switching function has a finite number of zeros in I then the
extremal associated to it is called ui-bang-bang extremal, and ui is piecewise
constant. If, however, there is a non-trivial sub-interval Ī of I in which ϕi ≡ 0,
then the PMP maximization condition (1.6) is not sufficient to characterize
the behavior of ui in I, and the extremal is called ui-singular.
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1.2.3 On Singular Extremals and Their Existence

Consider an extremal (x, u, λ) and, for all i between 1 and n, let Ji be the
set of points in I such that ϕi = 0 and ϕ′i = 0. The time derivative of the
switching function can be computed almost everywhere as

ϕ′i =
〈
λ̇(t), gi(x(t))

〉
+

〈
λ(t),

∂gi(x)

∂x
ẋ

〉
=

〈
λ(t), [f, gi](x(t)) +

n∑
j=1

uj(t)[gj , gi](x(t))

〉
,

where [·, ·] is the Lie Bracket of two vector fields defined as [a(x), b(x)] =
∂b
∂xa −

∂a
∂xb. The vector-fields gi are given by the columns of g = [0, L(q)⊤]⊤

which means that the gis have the structure of gi = [0, ℓi(q)
⊤]⊤, where ℓi is

the i-th column of L. From this we can compute

∂gi
∂x

=

[
0 0

∂ℓi(q)
∂q 0

]

which in turn implies that for any i, j, [gi, gj ] = 0. From this, it follows that

ϕ′i = ⟨λ(t), [f, gi](x(t))⟩

and in particular the function ϕ′i is again differentiable. Similarly, one can
show that

[f, gi] = −
[
ℓi(q)
∗

]
which in turn implies that {g1, . . . , gn, [f, g1], . . . , [f, gn]} is a frame of vec-
tor fields. This observation derived from the assumed structure of our system
allows us to state the following result regarding the existence of singular ex-
tremals:

Lemma 1 ( [15,16]). The set of points for which all switching functions and
their derivatives are zero is empty, i.e. J1 ∩ J2 ∩ J3 · · · ∩ Jn = ∅.

This follows immediately from the fact that ϕi = ⟨λ, gi⟩ = 0 and ϕ′i =
⟨λ, [f, gi]⟩ = 0 hold for all i if and only if λ ≡ 0 (since {g1, . . . , gn, [f, g1], . . . , [f, gn]}
is a frame) contradicting the assumption that (x, u, λ) is an extremal. From
this, the following Corollary follows immediately:

Corollary 1. If the extremal (x, u, λ) is ui-singular for all i ̸= k for some
k ∈ N≤n, then uk is bang-bang.

For evaluating the singularity conditions, we compute the second derivative
of the i-th switching function as below:
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ϕ′′i =
〈
λ̇, fgi

〉
+

〈
λ,

∂

∂x
(fgi)ẋ

〉

= −

〈f ′ + n∑
j=1

ujg
′
j

⊤

λ, fgi

〉
+

〈
λ,

∂

∂x
(fgi)

f +

n∑
j=1

ujgj

〉

=

〈
λ,

∂

∂x
(fgi)

f +

n∑
j=1

ujgj

−

f ′ + n∑
j=1

ujg
′
j

 fgi

〉

= ⟨λ, ffgi⟩+
n∑

j=1

uj ⟨λ, gjfgi⟩

where from now on, to simplify notations, we write iterated Lie brackets as

X1X2 . . . Xp = [X1, [X2, [. . . , [Xp−1, Xp] . . .]]] .

To further simplify this expression, consider the following proposition:

Proposition 1 ( [15, 16]). For mechanical systems with dynamics given by
(1.1), for any i, j ∈ [1, 2, . . . , n], gifgj ∈ span({g1, . . . , gn}). That is, ∃αijk :
R2n → R such that

(gifgj)(q, q̇) =
∑
k

αijk([q; q̇])gk(q). (1.8)

One can easily verify this algebraically: remembering that gi = [0, ℓi(q)
⊤]⊤

and fgj = −[ℓj(q)
⊤, ∗]⊤, then

gifgj =
∂fgj
∂x

⊤
gi −

∂gi
∂x

⊤
fgj

= −

[
∂ℓ⊤i
∂q 0

∗ ∗

] [
0

ℓj(q)

]
+

[
0 0
∗ ∗

] [
ℓj
∗

]
=

[
0
∗

]
. (1.9)

With this, we can write the second derivative of the switching function as

ϕ′′i =

〈
λ, ffgi +

n∑
j=1

uj

n∑
k=1

αijkgk

〉

=

〈
λ, ffgi +

n∑
k=1

n∑
j=1

ujαijkgk

〉
(1.10)

=

〈
λ, ffgi +

n∑
k=1

βikgk

〉
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= ⟨λ, ffgi⟩+
n∑

k=1

βikϕk. (1.11)

where all time dependencies were omitted for clarity, also, notice that βik are
also a function of the control signals.

Notice that expression (1.11) holds in general, without any assumption of
singularity. Next, for some k ∈ N≤n assume the system is ui-singular for all
i ∈ N≤n, i ̸= k, then

ϕi(t)
′′ = ⟨λ, ffgi⟩+ βikϕk = 0. (1.12)

Let us consider the following set of vector fields:

{gi | i ∈ N≤n} ∪ {fgi | i ∈ N≤n, i ̸= k} ∪ {ffgi | i ∈ N≤n, i ̸= k},

and let Sk be the set of states for which these vector fields span the entire
tangent space. From this, the following Theorem can be proven by contradic-
tion:

Theorem 1 ( [15, 16]). If the extremal is ui-singular for all i ∈ N≤n, i ̸= k
and is inside Sk for all t, then uk is constant and equal to Lk or constant
equal to Mk almost everywhere (i.e. for all time t, except for a set of measure
zero), i.e. there is no switching of the value of uk.

Let uk = ck where ck is constant and equal to either Mk or Lk. Let
ū be the vector obtained by concatenating all ui for i ̸= k. To determine
the expression for the singular controls, expand the second-order singularity
condition as follows:

0 = ϕi(t)
′′

= ⟨λ, ffgi⟩+ ckαikkϕk +
∑
j ̸=k

ujαijkϕk

= ⟨λ, ffgi⟩+ ckαikkϕk + ū⊤aikϕk

where aik is the column vector obtained from concatenating αijk for j ̸= k.
Writing the equation above for all i ̸= k and concatenating it in matrix form
results in

0 = ψk + bkkckϕk + ū⊤Akϕk (1.13)

where ψk is the vector obtaining from concatenating ⟨λ, ffgi⟩ for i ̸= k,
bkk is the vector obtained from concatenating αikk for i ̸= k and Ak is the
matrix whose columns are given by aik for i ̸= k. One can easily verify that
if ∆k = det(Ak) ̸= 0, and ϕk ̸= 0, then there is a unique solution for ū from
solving (1.13). With this, define:

Rk = Sk ∩ {x | ∆k(x) ̸= 0}
then we state the following Theorem:
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Theorem 2 ( [15,16]). Given an extremal of the time-optimal control prob-
lem, if it is ui singular for all i ̸= k and remains in Rk for all t, then all ui
are analytic functions of time and can be computed by solving (1.13).

With this we have set up the theoretical background to regularize numeri-
cal artifacts in singular solutions obtained from numerical solvers for optimal
control problems.

1.3 Time-Optimal Control of a Robotic Arm

In this section, we illustrate the discussed technique on a 2-DOF robotic arm.
This system provides a good example of the theory since its reduced order
together with Lemma 1 implies that only one of the controllers can be singular
at any given time. Furthermore, as we will see shortly, the second actuator
can never be singular by itself, implying that any trajectory with a singular
arc is such that ϕ1(t) ≡ 0 for some non-trivial time interval.

1.3.1 The 2-DOF Arm Model

θ1

ℓ1

xcm
1

θ2

ℓ2xcm
2

Fig. 1.1: Diagram of a 2 link planar robotic manipulator. Gravity is assumed to be
orthogonal to the plane of movement of the robot. All indicated parameters are
given in Table 1.1.

Link #1 #2

Length (ℓ) 0.5 0.5
CoM Position (xcm) 0.5 0.5

Mass (m) 50 30
Inertia (Iz) 5 3

Table 1.1: Parameters for the 2DOF manipulator depicted in Fig. 1.1.
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Consider the 2-link manipulator illustrated in Fig. 1.1, with parameters
given in Table 1.1. Assuming that gravity is perpendicular to the plane of
movement results in the following equations of motion:

u = M(θ)θ̈ + C(θ, θ̇) (1.14)

where

M11 = m2ℓ
2
1 + 2m2 cos(θ2)ℓ1x

cm
2 +m1 (x

cm
1 )

2

+m2 (x
cm
2 )

2
+ Iz,1 + Iz,2

M12 = M21 = m2 (x
cm
2 )

2
+ ℓ1m2 cos(θ2)x

cm
2

M22 = m2 (x
cm
2 )

2
+ Iz,2

C1 = − ℓ1m2x
cm
2 sin(θ2)θ̇

2
2

− 2ℓ1θ̇1m2x
cm
2 sin(θ2)θ̇2

C2 = ℓ1m2x
cm
2 sin(θ2)θ̇

2
1

θ = [θ1, θ2]
⊤

u = [u1, u2]
⊤.

The state-space equations are, then, given by[
θ̇

θ̈

]
︸︷︷︸
ẋ

=

[
θ̇

−M(θ)−1C(θ, θ̇)

]
︸ ︷︷ ︸

f(x)

+

[
0

M(θ)−1

]
︸ ︷︷ ︸

g(x)

u. (1.15)

This model, albeit simple, serves as a basis for comparison and validation
between different time-optimal control strategies. Next we take a look at what
the singular solutions look like for this model.

1.3.2 Singular Solutions for the Arm Model

The 2DOF arm model is significantly simpler than the general case dealt in
the previous section since it possesses only two actuators. As a consequence,
the possible singular controls can be analyzed by exhaustion.

On the u2-Singularity

For the 2-DOF arm case, symbolic computation shows that αij1 ≡ 0, which
in turn implies that ∆1 = 0. This means that (1.12) is simplfied to

ϕ′′2 = ⟨λ, ffg2⟩ = 0.

We, then, compute the third-order condition for singularity, given by
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ϕ′′′2 = ⟨λ, fffg2 + u1g1ffg2 + u2g2ffg2⟩ . (1.16)

Again, for the 2-DOF arm case, it can be shown symbolically that
⟨λ, g2ffg2⟩ is a linear combination of ϕ2 and ϕ′2, and therefore vanishes by
singularity. Furthermore, u1 must be constant equal to L1 or U1. Let B be
the set where the vectors {g2, fg2, ffg2, fffg2 + cg1ffg2} are linearly inde-
pendent for c = L1 or c = U1. The set B is open and can be shown to be
nonempty; thus we can state:

Theorem 3 ( [15, 16]). There are no u2-singular extremals for which the
state x(t) intersects the open dense set B.

From this, we next focus on the case where the first control signal exhibits
singularity.

On the u1-Singularity

For this section, we assume k = 2, that is, the extremal is u1-singular and (con-
sequently) u2-bang-bang. We can verify that along an u1-singular extremal of
the 2DOF arm system, it is necessary that:

ϕ1 = ⟨λ, g1⟩ = 0

ϕ′1 = ⟨λ, fg1⟩ = 0

ϕ′′1 = ⟨λ, ffg1⟩+ (α1(x)u1 + α2(x)u2) ⟨λ, g2⟩ = 0.

(1.17)

The functions α1,2 are not simultaneously zero, and can be obtained by
solving:

g1fg2 = α1g1 + α2g2 (1.18)

which always has a solution since g1fg2 ∈ span ({g1, g2}), as per Proposition
1.

Next, notice that g1 = [0; 0;µ; ν] and fg1 = [−µ;−ν; 0; γ], where µ(x), ν(x)
and γ(x) are scalar functions of the states. Then, the first two equations of
(1.17), which give us orthogonality conditions for λ, are equivalent to:

λ(t) = λ2(t)


−ν/µ
1
0
0


︸ ︷︷ ︸

a(x)

+λ4(t)


γ/µ
0

−ν/µ
1


︸ ︷︷ ︸

b(x)

. (1.19)

As a consequence of decomposing λ(t) as in (1.19), ⟨a(x), g2⟩ = 0, which
together with Lemma 1, means we can rewrite the third equation in (1.17) as:

u1(x, λ) = r(x)
λ2
λ4

+ s(x) (1.20)

where, since u2 = c where c =M2 or c = L2:
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r(x) = − 1

α1(x)

⟨a(x), ffg1(x)⟩
⟨b(x), g1(x)⟩

s(x) = − 1

α1(x)

⟨b(x), ffg1(x)⟩
⟨b(x), g1(x)⟩

− α2(x)

α1(x)
c.

Therefore, we can recover an expression for the control signal u1 that
maintains u1-singularity as long as λ4(t) ̸= 0 and α1(x) ̸= 0, since if either of
those fail, then our control expression is undefined. To deal with this problem
we restrict our trajectories to a subspace of our state space defined as

Rk = {x ∈ R4 | span ({g1(x), g2(x), (fg1)(x), (ffg1)(x)}) = R4,

and α1(x) ̸= 0}.
(1.21)

One can verify that if x(t) ∈ Sk then λ4(t) ̸= 0 as per Theorem 2. Fur-
thermore, the invertibility of α1(x) is necessary for r(x) and s(x) to be well
defined.

For our 2DOF arm, we can explicitly write Rk after evaluating our sym-
bolic expressions as

Rk = {x ∈ R4 | θ2 ̸= kπ/2, and θ̇1 + θ̇2 ̸= 0} (1.22)

and as long as our trajectory remains in this set we can choose u1 as in (1.20)
and enforce ϕ1 ≡ 0. The next session describes a process through which a u1-
singular extremal can be analytically found for the 2DOF arm system. After
that, numerical tools are used to attempt to recover the obtained singular
extremal, or a more efficient solution for the same initial and endpoints.

1.3.3 Numerical Simulations

We first obtain a u1-singular extremal of the 2DOF arm by numerically solving
(1.2) and (1.5) for a fixed time T = 0.7, and imposing the following initial
conditions on the states and costates:

x0 =

[
θ0
θ̇0

]
=


π
20
π
20
0.30
0.5

 , λ0 =


5.1165
3.0000
10.2330
6.0000

 . (1.23)

The control signal u2(t) = −10 is chosen to be saturated at its lower-
bound, and u1 is computed as in (1.20) and has as saturation |u1| ≤ 20. The
resulting trajectory is guaranteed to be an extremal of the system and is used
as a baseline to compare with numerical solvers.

We next give the same initial condition x0 and the resulting endpoint x(T )
(from solving the above equation) to GPOPS-II [1], an off-the-shelf, general-
purpose optimal control software, and CASADI, an auxiliary toolbox that
facilitates the solving of optimal control problems. We ask them to find the
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minimum-time control that takes our system from x0 to x(T ). The GPOPS-
II software uses collocation in the Matlab environment to numerically find a
solution that minimizes our cost function, while we built a shooting-based code
with the help of CASADI in Python. This means that both software packages
approach the problem differently from each other and from our constructive
control based on the Pontryagin Maximum Principle and singularity arcs.
The resulting trajectories are plotted on top of the ones obtained from u1-
singularity and presented in Fig. 1.2.

From Fig. 1.2 we can see that both GPOPS-II and CASADI reach the
same optimal-time value as the u1-singular control, and both attempt to re-
construct (1.20), albeit with numerical artifacts. While none of the solutions
are guaranteed to be the global minimum of the problem, the fact that they
reached the same cost and trajectory through different methodologies gives
us confidence in the results. Furthermore, the state trajectories for all three
controls are the same.

We can deepen our analysis by examining the numerical costates returned
by GPOPS-II. From Fig. 1.3 we can see that both GPOPS-II and the u1-
singular extremal have the same value for the ratio λ2/λ4 which is the only
dependency of u1 on the costates in (1.20). Furthermore, also from Fig. 1.3 on
the bottom plot we can see that the values for both ϕ1 and ϕ̇1 recovered by
GPOPS-II are extremely small and oscillate around zero. This observation,
along with the fact that to satisfy the Pontryagin Maximum Principle, u1
must either be saturated at ±20 (bang-bang) or follow the expression given
by (1.20) (singular), allow us to definitely conclude that the peaks on the
GPOPS-II solution in Fig. 1.2 are indeed numerical artifacts and not part of
the intended solution.

Furthermore, we can conclude that the behavior presented by GPOPS-II
when computing singular arcs is expected. Looking at the profile of ϕ̇1 in
Fig. 1.3 shows that the algorithm struggles to achieve a value for ϕ1 that is
identically zero, oscillating, instead, around zero with very small amplitudes.
Depending on the software this might incorrectly register as a switch for the
control signal.

The numerical artifacts present in both the GPOPS-II and the CASADI
solution motivates the use of the theory presented in Section 1.3 whenever
singular arcs are detected, regularizing the intended control signal. To further
exemplify this point, we input a different set of initial and final points in our
numerical solvers for the 2DOF arm. Picking the initial and final points given
by

x0 =


π
20
π
20
0.5
0

 , xf =


0.351541096001406
0.073883000198405
0.594756773574437
−0.523743737608164

 , (1.24)

results in the signal for u1 shown in Fig. 1.4.
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Fig. 1.2: Comparison between a u1-singular extremal (dashed black) and the
numerical solutions obtained by GPOPS-II (solid blue) and CASADI (solid red).
All solutions reach the target state at basically the same time, and follow the same
trajectory for the states. Furthermore, they appear to follow the same profile for
the input signals, albeit presenting numerical artifacts in the case of the numerical
solutions.
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Fig. 1.3: In this figure we can see in the top plot that GPOPS-II (solid blue)
recovers the same ratio λ2/λ4 than our u1-singular extremal (dashed red).
Furthermore, on the bottom plot we see ϕ1 = ⟨λ, g1⟩ (blue) and ϕ′

1 = ⟨λ, fg1⟩
(red). We can see that both signals are very close to zero, but ϕ̇1 present very
small oscillations which look to correlate to the peaks present in the signal for u1

in Fig. 1.2.

By inspecting the top plot of Fig 1.4, where the numerically recovered
control signal is given in blue for GPOPS and red for CASADI, and the bottom
plot, where the values of ϕ1 and ϕ′1 are given in blue and red respectively, we
notice that for these initial and final points GPOPS-II recovers a solution with
three clear subintervals: first being saturated on u1, with ϕ1 > 0; second being
singular; and third being saturated again with ϕ1 > 0. CASADI, however,
struggles to find the distinct intervals of bang-bang and singularity, despite
presenting basically the same final time. The signal in dashed black on the
top plot, which is the value of (1.20) for the costates given by GPOPS-II,
recovers the numerical solution for the control signal in the singular interval
without the artifacts.

1.4 Conclusions

In this work, we review a theoretical approach to formulating singular ex-
tremals for the minimum-time control problem of fully actuated mechanical
systems and illustrate its effectiveness on a 2-DOF robotic arm numerical
example. We leverage and extend a previous result from one of the authors,
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Fig. 1.4: In this figure we illustrate how the results from this paper can be used to
refine and obtain algebraic expressions for optimal control solutions that pass
through singularity arcs. In the top plot we have the control signal for the first joint
recovered by GPOPS-II (solid blue), CASADI (solid red), and the one predicted
by (1.20) using the costates from GPOPS-II (dashed black). On the bottom plot
we have the values of ϕ1 = ⟨λ, g1⟩ (blue) and ϕ′

1 = ⟨λ, fg1⟩ (red) computed by the
costate values returned by GPOPS-II. Notice that when GPOPS-II converges to a
singular solution for ϕ1, the recovered signal follows the same profile as the one
predicted by theory, except for the numerical artifacts. Furthermore, the solution
from CASADI struggles to identify the two distinct intervals.

which guarantees that not all control inputs of a given robotic system can be
singular at the same time. We derived conditions for a singular extremal to
be well defined and for an algebraic expression for the singular control signal
to be obtainable.

For the case of a 2-DOF robotic arm, the theory simplifies greatly since
if we impose, by choice of the input function, one of the joint controls to
be singular in the sense of the Pontryagin Maximum Principle, we guarantee
that the other will be bang-bang. For the numerical simulations of this paper,
we impose that the first joint of our system be singular and the second be
saturated and generate a trajectory that satisfies the maximum principle for a
small enough interval of time. We also show that the alternate case (first joint
bang-bang and second joint singular) is impossible according to the theory.
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Despite the Maximum Principle being only necessary for the optimality
of a solution, the generated singular trajectory matches the collocation-based
numerical solutions given by GPOPS-II and the shooting-based solution given
by a CASADI-based algorithm built by the authors, while also giving an ana-
lytic expression for the control function and avoiding numerical artifacts. The
matching between solutions is further confirmed when analyzing the recovered
value for the switching function from the GPOPS-II solution, which is very
close to zero but is incapable of being identically zero, instead oscillating with
a very small amplitude.

The method that we discuss is capable of dealing with trajectories that are
singular and provides a closed-form expression for our singular control signals,
allowing us to regularize the numerical solution whenever it enters a singular
interval. While this paper explores mainly robotic arms and specifically the
2DOF arm, the properties that make this method viable still hold for a more
complicated systems. By leveraging the more general theoretical framework,
one could extend that for more interesting and complex systems.
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