BACK TO INDEX

Publications about 'input to output stability'
Articles in journal or book chapters
  1. E.D. Sontag. Input-to-State Stability. In J. Baillieul and T. Samad, editors, Encyclopedia of Systems and Control, pages 1-9. Springer-Verlag, 2020. [PDF] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, input to output stability.
    Abstract:
    The notion of input to state stability (ISS) qualitatively describes stability of the mapping from initial states and inputs to internal states (and more generally outputs). This encyclopedia-style article entry gives a brief introduction to the definition of ISS and a discussion of equivalent characterizations. It is an update of the article in the 2015 edition, including additional citations to recent PDE work.


  2. E.D. Sontag. Input-to-State Stability. In J. Baillieul and T. Samad, editors, Encyclopedia of Systems and Control. Springer-Verlag, 2015. [PDF] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, input to output stability.
    Abstract:
    The notion of input to state stability (ISS) qualitatively describes stability of the mapping from initial states and inputs to internal states (and more generally outputs). This entry focuses on the definition of ISS and a discussion of equivalent characterizations.


  3. E.D. Sontag. Input to State Stability. In W. S. Levine, editor, The Control Systems Handbook: Control System Advanced Methods, Second Edition., pages 45.1-45.21 (1034-1054). CRC Press, Boca Raton, 2011. [PDF] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, input to output stability.
    Abstract:
    An encyclopedia-type article on foundations of ISS.


  4. D. Angeli, B.P. Ingalls, E.D. Sontag, and Y. Wang. Separation principles for input-output and integral-input-to-state stability. SIAM J. Control Optim., 43(1):256-276, 2004. [PDF] [doi:http://dx.doi.org/10.1137/S0363012902419047] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, input to output stability.
    Abstract:
    We present new characterizations of input-output-to-state stability. This is a notion of detectability formulated in the ISS framework. Equivalent properties are presented in terms of asymptotic estimates of the state trajectories based on the magnitudes of the external input and output signals. These results provide a set of "separation principles" for input-output-to-state stability , characterizations of the property in terms of weaker stability notions. When applied to the closely related notion of integral ISS, these characterizations yield analogous results.


  5. M. Krichman and E.D. Sontag. Characterizations of detectability notions in terms of discontinuous dissipation functions. Internat. J. Control, 75(12):882-900, 2002. [PDF] Keyword(s): input to state stability, detectability, input to output stability, detectability.
    Abstract:
    We consider a new Lyapunov-type characterization of detectability for nonlinear systems without controls, in terms of lower-semicontinuous (not necessarily smooth, or even continuous) dissipation functions, and prove its equivalence to the GASMO (global asymptotic stability modulo outputs) and UOSS (uniform output-to-state stability) properties studied in previous work. The result is then extended to provide a construction of a discontinuous dissipation function characterization of the IOSS (input-to-state stability) property for systems with controls. This paper complements a recent result on smooth Lyapunov characterizations of IOSS. The utility of non-smooth Lyapunov characterizations is illustrated by application to a well-known transistor network example.


  6. E.D. Sontag. The ISS philosophy as a unifying framework for stability-like behavior. In Nonlinear control in the year 2000, Vol. 2 (Paris), volume 259 of Lecture Notes in Control and Inform. Sci., pages 443-467. Springer, London, 2001. [PDF] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, input to output stability.
    Abstract:
    (This is an expository paper prepared for a plenary talk given at the Second Nonlinear Control Network Workshop, Paris, June 9, 2000.) The input to state stability (ISS) paradigm is motivated as a generalization of classical linear systems concepts under coordinate changes. A summary is provided of the main theoretical results concerning ISS and related notions of input/output stability and detectability. A bibliography is also included, listing extensions, applications, and other current work.


  7. E.D. Sontag and Y. Wang. Lyapunov characterizations of input to output stability. SIAM J. Control Optim., 39(1):226-249, 2000. [PDF] [doi:http://dx.doi.org/10.1137/S0363012999350213] Keyword(s): input to state stability.
    Abstract:
    This paper presents necessary and sufficient characterizations of several notions of input to output stability. Similar Lyapunov characterizations have been found to play a key role in the analysis of the input to state stability property, and the results given here extend their validity to the case when the output, but not necessarily the entire internal state, is being regulated.


  8. E.D. Sontag and Y. Wang. Notions of input to output stability. Systems Control Lett., 38(4-5):235-248, 1999. [PDF] Keyword(s): input to state stability, ISS, input to output stability.
    Abstract:
    This paper deals with several related notions of output stability with respect to inputs (which may be thought of as disturbances). The main such notion is called input to output stability (IOS), and it reduces to input to state stability (ISS) when the output equals the complete state. For systems with no inputs, IOS provides a generalization of the classical concept of partial stability. Several variants, which formalize in different manners the transient behavior, are introduced. The main results provide a comparison among these notions


Conference articles
  1. B.P. Ingalls, E.D. Sontag, and Y. Wang. Measurement to error stability: a notion of partial detectability for nonlinear systems. In Proc. IEEE Conf. Decision and Control, Las Vegas, Dec. 2002, IEEE Publications, pages 3946-3951, 2002. [PDF] Keyword(s): input to state stability.
    Abstract:
    For systems whose output is to be kept small (thought of as an error output), the notion of input to output stability (IOS) arises. Alternatively, when considering a system whose output is meant to provide information about the state (i.e. a measurement output), one arrives at the detectability notion of output to state stability (OSS). Combining these concepts, one may consider a system with two types of outputs, an error and a measurement. This leads naturally to a notion of partial detectability which we call measurement to error stability (MES). This property characterizes systems in which the error signal is detectable through the measurement signal. This paper provides a partial Lyapunov characterization of the MES property. A closely related property of stability in three measures (SIT) is introduced, which characterizes systems for which the error decays whenever it dominates the measurement. The SIT property is shown to imply MES, and the two are shown to be equivalent under an additional boundedness assumption. A nonsmooth Lyapunov characterization of the SIT property is provided, which yields the partial characterization of MES. The analysis is carried out on systems described by differential inclusions -- implicitly incorporating a disturbance input with compact value-set.


  2. B.P. Ingalls, E.D. Sontag, and Y. Wang. Remarks on input to output stability. In Proc. IEEE Conf. Decision and Control, Phoenix, Dec. 1999, IEEE Publications, 1999, pages 1226-1231, 1999. Keyword(s): input to state stability, integral input to state stability, input to output stability.


  3. E.D. Sontag and Y. Wang. A notion of input to output stability. In Proc. European Control Conf., Brussels, July 1997, 1997. Note: (Paper WE-E A2, CD-ROM file ECC958.pdf, 6 pages). [PDF] Keyword(s): input to state stability, ISS, input to output stability, input to state stability.
    Abstract:
    This paper deals with a notion of "input to output stability (IOS)", which formalizes the idea that outputs depend in an "aymptotically stable" manner on inputs, while internal signals remain bounded. When the output equals the complete state, one recovers the property of input to state stability (ISS). When there are no inputs, one has a generalization of the classical concept of partial stability. The main results provide Lyapunov-function characterizations of IOS.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:36 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html