Publications about 'differentiation' |
Articles in journal or book chapters |
Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, which enables the data-driven study of highly complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as the time trajectories of cell states. These ``dynamical phenotypes'' are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high-dimensionality and lack of individual cell traces, three timepoints of single-cell omics data are theoretically necessary and sufficient in order to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more timepoints even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis. |
Differentiation within multicellular organisms is a complex process that helps to establish spatial patterning and tissue formation within the body. Often, the differentiation of cells is governed by morphogens and intercellular signaling molecules that guide the fate of each cell, frequently using toggle-like regulatory components. Synthetic biologists have long sought to recapitulate patterned differentiation with engineered cellular communities, and various methods for differentiating bacteria have been invented. Here, we couple a synthetic corepressive toggle switch with intercellular signaling pathways to create a “quorum-sensing toggle”. We show that this circuit not only exhibits population-wide bistability in a well-mixed liquid environment but also generates patterns of differentiation in colonies grown on agar containing an externally supplied morphogen. If coupled to other metabolic processes, circuits such as the one described here would allow for the engineering of spatially patterned, differentiated bacteria for use in biomaterials and bioelectronics. |
Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation, with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The ``Basin of Attraction percentage'' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that methylation plays in enhancing the stability of the silenced gene state. |
In biological processes such as embryonic development, hematopoietic cell differentiation, and the arising of tumor heterogeneity and consequent resistance to therapy, mechanisms of gene activation and deactivation may play a role in the emergence of phenotypically heterogeneous yet genetically identical (clonal) cellular populations. Mathematically, the variability in phenotypes in the absence of genetic variation can be modeled through the existence of multiple metastable attractors in nonlinear systems subject with stochastic switching, each one of them associated to an alternative epigenetic state. An important theoretical and practical question is that of estimating the number and location of these states, as well as their relative probabilities of occurrence. This paper focuses on a rigorous analytic characterization of multiple modes under slow promoter kinetics, which is a feature of epigenetic regulation. It characterizes the stationary distributions of Chemical Master Equations for gene regulatory networks as a mixture of Poisson distributions. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations and a trans-differentiation network. |
This paper describes a potential pitfall of perturbation-based approaches to network inference It is shows experimentally, and then explained mathematically, how even in the simplest signaling systems, perturbation methods may lead to paradoxical conclusions: for any given pair of two components X and Y, and depending upon the specific intervention on Y, either an activation or a repression of X could be inferred. The experiments are performed in an in vitro minimal system, thus isolating the effect and showing that it cannot be explained by feedbacks due to unknown intermediates; this system utilizes proteins from a pathway in mammalian (and other eukaryotic) cells that play a central role in proliferation, gene expression, differentiation, mitosis, cell survival, and apoptosis and is a perturbation target of contemporary therapies for various types of cancers. The results show that the simplistic view of intracellular signaling networks being made up of activation and repression links is seriously misleading, and call for a fundamental rethinking of signaling network analysis and inference methods. |
Conference articles |
Cellular reprogramming is traditionally accomplished through an open loop control approach, wherein key transcription factors are injected in cells to steer a gene regulatory network toward a pluripotent state. Recently, a closed loop feedback control strategy was proposed in order to achieve more accurate control. Previous analyses of the controller were based on deterministic models, ignoring the substantial stochasticity in these networks, Here we analyze the Chemical Master Equation for reaction models with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when analyzed using a stochastic model. |
In the mathematical modeling of cell differentiation, it is common to think of internal states of cells (quanfitied by activation levels of certain genes) as determining different cell types. We study here the "PU.1/GATA-1 circuit" that controls the development of mature blood cells from hematopoietic stem cells (HSCs). We introduce a rigorous chemical reaction network model of the PU.1/GATA-1 circuit, which incorporates current biological knowledge and find that the resulting ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting the fact that differentiation networks have, by definition, alternative stable steady states. When considering instead the stochastic version of this chemical network, we analytically construct the stationary distribution, and are able to show that this distribution is indeed capable of admitting a multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to bias the probabilities towards different stationary states. We remark that certain changes in system parameters can be physically implemented by a biological feedback mechanism; tuning this feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell types over others. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibTEX by bibtex2html