BACK TO INDEX

Publications of Eduardo D. Sontag jointly with D. Angeli
Articles in journal or book chapters
  1. M.A. Al-Radhawi, D. Angeli, and E.D. Sontag. On structural contraction of biological interaction networks. 2024. Note: To be submitted. Preprint in: arXiv https://doi.org/10.48550/arXiv.2307.13678.Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms.
    Abstract:
    In previous work, we have developed an approach to understanding the long-term dynamics of classes of chemical reaction networks, based on rate-dependent Lyapunov functions. In this paper, we show that stronger notions of convergence can be established by proving contraction with respect to non-standard norms. This enables us to show that such networks entrain to periodic inputs. We illustrate our theory with examples from signaling pathways and genetic circuits.


  2. D. Angeli, M.A. Al-Radhawi, and E.D. Sontag. A robust Lyapunov criterion for non-oscillatory behaviors in biological interaction networks. IEEE Transactions on Automatic Control, 67(7):3305-3320, 2022. [PDF] [doi:10.1109/TAC.2021.3096807] Keyword(s): oscillations, dynamical systems, enzymatic cycles, systems biology.
    Abstract:
    This paper introduces a notion of non-oscillation, proposes a constructive method for its robust verification, and studies its application to biological interaction networks. The paper starts by revisiting Muldowney's result on non-existence of periodic solutions based on the study of the variational system of the second additive compound of the Jacobian of a nonlinear system. It then shows that exponential stability of the latter rules out limit cycles, quasi-periodic solutions, and broad classes of oscillatory behavior. The focus then turns ton nonlinear equations arising in biological interaction networks with general kinetics, the paper shows that the dynamics of the variational system can be embedded in a linear differential inclusion. This leads to algorithms for constructing piecewise linear Lyapunov functions to certify global robust non-oscillatory behavior. Finally, the paper applies the new techniques to study several regulated enzymatic cycles where available methods are not able to provide any information about their qualitative global behavior.


  3. M.A. Al-Radhawi, D. Angeli, and E.D. Sontag. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks. PLoS Computational Biology, pp 16(2): e1007681, 2020. [PDF] Keyword(s): MAPK cascades, Lyapunov functions, stability, chemical networks, chemical rection networks, systems biology, RFM, ribosome flow model.
    Abstract:
    This paper deals with the analysis of the dynamics of chemical reaction networks, developing a theoretical framework based only on graphical knowledge and applying regardless of the particular form of kinetics. This paper introduces a class of networks that are "structurally (mono) attractive", by which we mean that they are incapable of exhibiting multiple steady states, oscillation, or chaos by the virtue of their reaction graphs. These networks are characterized by the existence of a universal energy-like function which we call a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear systems is introduced, which form the extremals of a linear convex cone. The problem is then reduced to that of finding a common Lyapunov function for this set of extremals. Based on this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction Networks (LEARN), is provided that constructs such functions or rules out their existence. An extensive study of biochemical networks demonstrates that LEARN offers a new unified framework. We study basic motifs, three-body binding, and transcriptional networks. We focus on cellular signalling networks including various post-translational modification cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading, ERK signaling, and the Ribosome Flow Model.


  4. D. Angeli, G.A. Enciso, and E.D. Sontag. A small-gain result for orthant-monotone systems under mixed feedback. Systems and Control Letters, 68:9-19, 2014. [PDF] Keyword(s): small-gain theorem, monotone systems.
    Abstract:
    This paper introduces a small-gain result for interconnected orthant-monotone systems for which no matching condition is required between the partial orders in input and output spaces. Previous results assumed that the partial orders adopted would be induced by positivity cones in input and output spaces and that such positivity cones should fulfill a compatibility rule: namely either be coincident or be opposite. Those two configurations correspond to positive feedback or negative feedback cases. We relax those results by allowing arbitrary orthant orders.


  5. D. Angeli and E.D. Sontag. Behavior of responses of monotone and sign-definite systems. In K. Hüper and Jochen Trumpf, editors, Mathematical System Theory - Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pages 51-64. CreateSpace, 2013. [PDF] Keyword(s): monotone systems, reverse engineering, systems biology.
    Abstract:
    This paper study systems with sign-definite interactions between variables, providing a sufficient condition to characterize the possible transitions between intervals of increasing and decreasing behavior. It also provides a discussion illustrating how our approach can help identify interactions in models, using information from time series of observations.


  6. D. Angeli, P. de Leenheer, and E.D. Sontag. Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. SIAM Journal on Applied Mathematics, 71:128-146, 2011. [PDF] Keyword(s): reaction networks, fluxes, Petri nets, persistence, reaction networks with inputs.
    Abstract:
    New checkable criteria for persistence of chemical reaction networks are proposed, which extend and complement existing ones. The new results allow the consideration of reaction rates which are time-varying, thus incorporating the effects of external signals, and also relax the assumption of existence of global conservation laws, thus allowing for inflows (production) and outflows (degradation). For time-invariant networks parameter-dependent conditions for persistence of certain classes of networks are provided. As an illustration, two networks arising in the systems biology literature are analyzed, namely a hypoxia and an apoptosis network.


  7. D. Angeli, P. de Leenheer, and E.D. Sontag. Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates. J. Mathematical Biology, 61:581-616, 2010. [PDF] Keyword(s): MAPK cascades, reaction networks, fluxes, monotone systems, reaction cordinates, Petri nets, persistence, futile cycles.
    Abstract:
    This paper derives new results for certain classes of chemical reaction networks, linking structural to dynamical properties. In particular, it investigates their monotonicity and convergence without making assumptions on the form of the kinetics (e.g., mass-action) of the dynamical equations involved, and relying only on stoichiometric constraints. The key idea is to find an alternative representation under which the resulting system is monotone. As a simple example, the paper shows that a phosphorylation/dephosphorylation process, which is involved in many signaling cascades, has a global stability property.


  8. D. Angeli and E.D. Sontag. Graphs and the Dynamics of Biochemical Networks. In B.P. Ingalls and P. Iglesias, editors, Control Theory in Systems Biology, pages 125-142. MIT Press, 2009.
    Abstract:
    This is an expository paper about graph-theoretical properties of biochemical networks, discussing two approaches, one based on bipartite graphs and Petri net concepts, and another based on decompositions into order-preserving subsystems. Other papers on this website contain basically the same material.


  9. D. Angeli, M.W. Hirsch, and E.D. Sontag. Attractors in coherent systems of differential equations. J. of Differential Equations, 246:3058-3076, 2009. [PDF] Keyword(s): monotone systems, positive feedback systems.
    Abstract:
    Attractors of cooperative dynamical systems are particularly simple; for example, a nontrivial periodic orbit cannot be an attractor. This paper provides characterizations of attractors for the wider class of systems defined by the property that all directed feedback loops are positive. Several new results for cooperative systems are obtained in the process.


  10. D. Angeli, P. de Leenheer, and E.D. Sontag. Chemical networks with inflows and outflows: A positive linear differential inclusions approach. Biotechnology Progress, 25:632-642, 2009. [PDF] Keyword(s): reaction networks, fluxes, differential inclusions, positive systems, Petri nets, persistence, switched systems.
    Abstract:
    Certain mass-action kinetics models of biochemical reaction networks, although described by nonlinear differential equations, may be partially viewed as state-dependent linear time-varying systems, which in turn may be modeled by convex compact valued positive linear differential inclusions. A result is provided on asymptotic stability of such inclusions, and applied to biochemical reaction networks with inflows and outflows. Included is also a characterization of exponential stability of general homogeneous switched systems


  11. D. Angeli and E.D. Sontag. Oscillations in I/O monotone systems. IEEE Transactions on Circuits and Systems, Special Issue on Systems Biology, 55:166-176, 2008. Note: Preprint version in arXiv q-bio.QM/0701018, 14 Jan 2007. [PDF] Keyword(s): monotone systems, hopf bifurcations, circadian rhythms, tridiagonal systems, nonlinear dynamics, systems biology, reaction networks, oscillations, periodic behavior, delay-differential systems.
    Abstract:
    In this note, we show how certain properties of Goldbeter's 1995 model for circadian oscillations can be proved mathematically, using techniques from the recently developed theory of monotone systems with inputs and outputs. The theory establishes global asymptotic stability, and in particular no oscillations, if the rate of transcription is somewhat smaller than that assumed by Goldbeter, based on the application of a tight small gain condition. This stability persists even under arbitrary delays in the feedback loop. On the other hand, when the condition is violated a Poincare'-Bendixson result allows to conclude existence of oscillations, for sufficiently high delays.


  12. D. Angeli and E.D. Sontag. Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles. Nonlinear Analysis Series B: Real World Applications, 9:128-140, 2008. [PDF] [doi:10.1016/j.nonrwa.2006.09.006] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Strongly monotone systems of ordinary differential equations which have a certain translation-invariance property are shown to have the property that all projected solutions converge to a unique equilibrium. This result may be seen as a dual of a well-known theorem of Mierczynski for systems that satisfy a conservation law. As an application, it is shown that enzymatic futile cycles have a global convergence property.


  13. D. Angeli, P. De Leenheer, and E.D. Sontag. A Petri net approach to persistence analysis in chemical reaction networks. In I. Queinnec, S. Tarbouriech, G. Garcia, and S-I. Niculescu, editors, Biology and Control Theory: Current Challenges (Lecture Notes in Control and Information Sciences Volume 357), pages 181-216. Springer-Verlag, Berlin, 2007. Note: See abstract for A Petri net approach to the study of persistence in chemical reaction networks.[PDF]


  14. D. Angeli, P. de Leenheer, and E.D. Sontag. A Petri net approach to the study of persistence in chemical reaction networks. Mathematical Biosciences, 210:598-618, 2007. Note: Please look at the paper ``A Petri net approach to persistence analysis in chemical reaction networks'' for additional results, not included in the journal paper due to lack of space. See also the preprint: arXiv q-bio.MN/068019v2, 10 Aug 2006. [PDF] Keyword(s): Petri nets, systems biology, reaction networks, nonlinear stability, dynamical systems, futile cycles.
    Abstract:
    Persistency is the property, for differential equations in Rn, that solutions starting in the positive orthant do not approach the boundary. For chemical reactions and population models, this translates into the non-extinction property: provided that every species is present at the start of the reaction, no species will tend to be eliminated in the course of the reaction. This paper provides checkable conditions for persistence of chemical species in reaction networks, using concepts and tools from Petri net theory, and verifies these conditions on various systems which arise in the modeling of cell signaling pathways.


  15. P. de Leenheer, D. Angeli, and E.D. Sontag. Monotone chemical reaction networks. J. Math Chemistry, 41:295-314, 2007. [PDF] [doi:10.1007/s10910-006-9075-z] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    We analyze certain chemical reaction networks and show that every solution converges to some steady state. The reaction kinetics are assumed to be monotone but otherwise arbitrary. When diffusion effects are taken into account, the conclusions remain unchanged. The main tools used in our analysis come from the theory of monotone dynamical systems. We review some of the features of this theory and provide a self-contained proof of a particular attractivity result which is used in proving our main result.


  16. P. de Leenheer, D. Angeli, and E.D. Sontag. Crowding effects promote coexistence in the chemostat. Journal of Mathematical Analysis and Applications, 319:48-60, 2006. [PDF] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    We provide an almost-global stability result for a particular chemostat model, in which crowding effects are taken into consideration. The model can be rewritten as a negative feedback interconnection of two monotone i/o systems with well-defined characteristics, which allows the use of a small-gain theorem for feedback interconnections of monotone systems. This leads to a sufficient condition for almost-global stability, and we show that coexistence occurs in this model if the crowding effects are large enough.


  17. J.P. Hespanha, D. Liberzon, D. Angeli, and E.D. Sontag. Nonlinear norm-observability notions and stability of switched systems. IEEE Trans. Automat. Control, 50(2):154-168, 2005. [PDF] Keyword(s): observability, input to state stability, observability, invariance principle.
    Abstract:
    This paper proposes several definitions of observability for nonlinear systems and explores relationships among them. These observability properties involve the existence of a bound on the norm of the state in terms of the norms of the output and the input on some time interval. A Lyapunov-like sufficient condition for observability is also obtained. As an application, we prove several variants of LaSalle's stability theorem for switched nonlinear systems. These results are demonstrated to be useful for control design in the presence of switching as well as for developing stability results of Popov type for switched feedback systems.


  18. P. de Leenheer, D. Angeli, and E.D. Sontag. On predator-prey systems and small-gain theorems. Math. Biosci. Eng., 2(1):25-42, 2005. [PDF] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    This paper deals with an almost global attractivity result for Lotka-Volterra systems with predator-prey interactions. These systems can be written as (negative) feedback systems. The subsystems of the feedback loop are monotone control systems, possessing particular input-output properties. We use a small-gain theorem, adapted to a context of systems with multiple equilibrium points to obtain the desired almost global attractivity result. It provides sufficient conditions to rule out oscillatory or more complicated behavior which is often observed in predator-prey systems.


  19. D. Angeli and E.D. Sontag. Interconnections of monotone systems with steady-state characteristics. In Optimal control, stabilization and nonsmooth analysis, volume 301 of Lecture Notes in Control and Inform. Sci., pages 135-154. Springer, Berlin, 2004. [PDF] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    One of the key ideas in control theory is that of viewing a complex dynamical system as an interconnection of simpler subsystems, thus deriving conclusions regarding the complete system from properties of its building blocks. Following this paradigm, and motivated by questions in molecular biology modeling, the authors have recently developed an approach based on components which are monotone systems with respect to partial orders in state and signal spaces. This paper presents a brief exposition of recent results, with an emphasis on small gain theorems for negative feedback, and the emergence of multistability and associated hysteresis effects under positive feedback.


  20. D. Angeli, J. E. Ferrell, and E.D. Sontag. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems.. Proc Natl Acad Sci USA, 101(7):1822-1827, 2004. Note: A revision of Suppl. Fig. 7(b) is here: http://sontaglab.org/FTPDIR/nullclines-f-g-REV.jpg; and typos can be found here: http://sontaglab.org/FTPDIR/angeli-ferrell-sontag-pnas04-errata.txt. [WWW] [PDF] [doi:10.1073/pnas.0308265100] Keyword(s): MAPK cascades, multistability, systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Multistability is an important recurring theme in cell signaling, of particular relevance to biological systems that switch between discrete states, generate oscillatory responses, or "remember" transitory stimuli. Standard mathematical methods allow the detection of bistability in some very simple feedback systems (systems with one or two proteins or genes that either activate each other or inhibit each other), but realistic depictions of signal transduction networks are invariably much more complex than this. Here we show that for a class of feedback systems of arbitrary order, the stability properties of the system can be deduced mathematically from how the system behaves when feedback is blocked. Provided that this "open loop," feedback-blocked system is monotone and possesses a sigmoidal characteristic, the system is guaranteed to be bistable for some range of feedback strengths. We present a simple graphical method for deducing the stability behavior and bifurcation diagrams for such systems, and illustrate the method with two examples taken from recent experimental studies of bistable systems: a two-variable Cdc2/Wee1 system and a more complicated five-variable MAPK cascade.


  21. D. Angeli, B.P. Ingalls, E.D. Sontag, and Y. Wang. Separation principles for input-output and integral-input-to-state stability. SIAM J. Control Optim., 43(1):256-276, 2004. [PDF] [doi:http://dx.doi.org/10.1137/S0363012902419047] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, input to output stability.
    Abstract:
    We present new characterizations of input-output-to-state stability. This is a notion of detectability formulated in the ISS framework. Equivalent properties are presented in terms of asymptotic estimates of the state trajectories based on the magnitudes of the external input and output signals. These results provide a set of "separation principles" for input-output-to-state stability , characterizations of the property in terms of weaker stability notions. When applied to the closely related notion of integral ISS, these characterizations yield analogous results.


  22. D. Angeli, B.P. Ingalls, E.D. Sontag, and Y. Wang. Uniform global asymptotic stability of differential inclusions. J. Dynam. Control Systems, 10(3):391-412, 2004. [PDF] [doi:http://dx.doi.org/10.1023/B:JODS.0000034437.54937.7f] Keyword(s): differential inclusions.
    Abstract:
    The stability of differential inclusions defined by locally Lipschitz compact valued maps is addressed. It is shown that if such a differential inclusion is globally asymptotically stable, then in fact it is uniformly globally asymptotically stable (with respect to initial states in compacts). This statement is trivial for differential equations, but here we provide the extension to compact (not necessarily convex) valued differential inclusions. The main result is presented in a context which is useful for control-theoretic applications: a differential inclusion with two outputs is considered, and the result applies to the property of global error detectability.


  23. D. Angeli and E.D. Sontag. Multi-stability in monotone input/output systems. Systems Control Lett., 51(3-4):185-202, 2004. [PDF] Keyword(s): multistability, systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    This paper studies the emergence of multistability and hysteresis in those systems that arise, under positive feedback, from monotone systems with well-defined steady-state responses. Such feedback configurations appear routinely in several fields of application, and especially in biology. The results are stated in terms of directly checkable conditions which do not involve explicit knowledge of basins of attractions of each equilibria.


  24. D. Angeli, P. de Leenheer, and E.D. Sontag. A small-gain theorem for almost global convergence of monotone systems. Systems Control Lett., 52(5):407-414, 2004. [PDF] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    A small-gain theorem is presented for almost global stability of monotone control systems which are open-loop almost globally stable, when constant inputs are applied. The theorem assumes "negative feedback" interconnections. This typically destroys the monotonicity of the original flow and potentially destabilizes the resulting closed-loop system.


  25. P. de Leenheer, D. Angeli, and E.D. Sontag. A feedback perspective for chemostat models with crowding effects. In Positive systems (Rome, 2003), volume 294 of Lecture Notes in Control and Inform. Sci., pages 167-174. Springer, Berlin, 2003. Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.


  26. P. de Leenheer, D. Angeli, and E.D. Sontag. Small-gain theorems for predator-prey systems. In Positive systems (Rome, 2003), volume 294 of Lecture Notes in Control and Inform. Sci., pages 191-198. Springer, Berlin, 2003. Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.


  27. D. Angeli and E.D. Sontag. Monotone control systems. IEEE Trans. Automat. Control, 48(10):1684-1698, 2003. Note: Errata are here: http://sontaglab.org/FTPDIR/angeli-sontag-monotone-TAC03-typos.txt. [PDF] Keyword(s): MAPK cascades, systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Monotone systems constitute one of the most important classes of dynamical systems used in mathematical biology modeling. The objective of this paper is to extend the notion of monotonicity to systems with inputs and outputs, a necessary first step in trying to understand interconnections, especially including feedback loops, built up out of monotone components. Basic definitions and theorems are provided, as well as an application to the study of a model of one of the cell's most important subsystems.


  28. D. Angeli, E.D. Sontag, and Y. Wang. Input-to-state stability with respect to inputs and their derivatives. Internat. J. Robust Nonlinear Control, 13(11):1035-1056, 2003. [PDF] Keyword(s): input to state stability, ISS, input to state stability, ISS.
    Abstract:
    A new notion of input-to-state stability involving infinity norms of input derivatives up to a finite order k is introduced and characterized. An example shows that this notion of stability is indeed weaker than the usual ISS. Applications to the study of global asymptotic stability of cascaded nonlinear systems are discussed.


  29. M. Arcak, D. Angeli, and E.D. Sontag. A unifying integral ISS framework for stability of nonlinear cascades. SIAM J. Control Optim., 40(6):1888-1904, 2002. [PDF] [doi:http://dx.doi.org/10.1137/S0363012901387987] Keyword(s): input to state stability, integral input to state stability, iISS, ISS.
    Abstract:
    We analyze nonlinear cascades in which the driven subsystem is integral ISS, and characterize the admissible integral ISS gains for stability. This characterization makes use of the convergence speed of the driving subsystem, and allows a larger class of gain functions when the convergence is faster. We show that our integral ISS gain characterization unifies different approaches in the literature which restrict the nonlinear growth of the driven subsystem and the convergence speed of the driving subsystem.


  30. D. Angeli, E.D. Sontag, and Y. Wang. A characterization of integral input-to-state stability. IEEE Trans. Automat. Control, 45(6):1082-1097, 2000. [PDF] Keyword(s): input to state stability, integral input to state stability, iISS, ISS.
    Abstract:
    Just as input to state stability (ISS) generalizes the idea of finite gains with respect to supremum norms, the new notion of integral input to state stability (IISS) generalizes the concept of finite gain when using an integral norm on inputs. In this paper, we obtain a necessary and sufficient characterization of the IISS property, expressed in terms of dissipation inequalities.


  31. D. Angeli, E.D. Sontag, and Y. Wang. Further equivalences and semiglobal versions of integral input to state stability. Dynamics and Control, 10(2):127-149, 2000. [PDF] [doi:http://dx.doi.org/10.1023/A:1008356223747] Keyword(s): input to state stability, integral input to state stability, iISS, ISS.
    Abstract:
    This paper continues the study of the integral input-to-state stability (IISS) property. It is shown that the IISS property is equivalent to one which arises from the consideration of mixed norms on states and inputs, as well as to the superposition of a ``bounded energy bounded state'' requirement and the global asymptotic stability of the unforced system. A semiglobal version of IISS is shown to imply the global version, though a counterexample shows that the analogous fact fails for input to state stability (ISS). The results in this note complete the basic theoretical picture regarding IISS and ISS.


  32. D. Angeli and E.D. Sontag. Forward completeness, unboundedness observability, and their Lyapunov characterizations. Systems Control Lett., 38(4-5):209-217, 1999. [PDF] Keyword(s): observability, input to state stability, dynamical systems.
    Abstract:
    A finite-dimensional continuous-time system is forward complete if solutions exist globally, for positive time. This paper shows that forward completeness can be characterized in a necessary and sufficient manner by means of smooth scalar growth inequalities. Moreover, a version of this fact is also proved for systems with inputs, and a generalization is also provided for systems with outputs and a notion (unboundedness observability) of relative completeness. We apply these results to obtain a bound on reachable states in terms of energy-like estimates of inputs.


Conference articles
  1. D. Angeli and E.D. Sontag. Remarks on the invalidation of biological models using monotone systems theory. In Proc. IEEE Conf. Decision and Control, Maui, Dec. 2012, 2012. Note: Paper TuC09.3.[PDF]
    Abstract:
    This paper presents techniques for finding out what type of solutions are compatible with a given sign pattern of interactions between state/input variables once the input behaviour is also known. By ``type'' of solutions we essentially refer to the sequence of upwards or downwards segments that variables can exhibit (essentially sign-patterns of variables derivatives) once input profiles are also specified. A concrete experimental example of how such techniques can invalidate models is also provided.


  2. D. Angeli and E.D. Sontag. A small-gain result for orthant-monotone systems in feedback: the non sign-definite case. In Proc. IEEE Conf. Decision and Control, Orlando, Dec. 2011, pages WeC09.1, 2011. Keyword(s): small-gain theorem, monotone systems.
    Abstract:
    This note introduces a small-gain result for interconnected MIMO orthant-monotone systems for which no matching condition is required between the partial orders in input and output spaces of the considered subsystems. Previous results assumed that the partial orders adopted would be induced by positivity cones in input and output spaces and that such positivity cones should fulfill a compatibility rule: namely either be coincident or be opposite. Those two configurations corresponded to positive-feedback or negative feedback cases. We relax those results by allowing arbitrary orthant orders.


  3. D. Angeli, P. de Leenheer, and E.D. Sontag. On persistence of chemical reaction networks with time-dependent kinetics and no global conservation laws. In Proc. IEEE Conf. Decision and Control, Shanhai, Dec. 2009, pages 4559-4564, 2009. [PDF] Keyword(s): reaction networks, fluxes, Petri nets, persistence, reaction networks with inputs.
    Abstract:
    This is a very summarized version ofthe first part of the paper "Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws".


  4. D. Angeli, P. de Leenheer, and E.D. Sontag. Petri nets tools for the analysis of persistence in chemical networks. In Proc. 7th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2007), Pretoria, South Africa, 22-24 August, 2007, 2007. Keyword(s): Petri nets, systems biology, reaction networks, nonlinear stability, dynamical systems, futile cycles.


  5. D. Angeli and E.D. Sontag. A note on monotone systems with positive translation invariance. In Control and Automation, 2006. MED '06. 14th Mediterranean Conference on, 28-30 June 2006, pages 1-6, 2006. IEEE. Note: Available from ieeexplore.ieee.org. [PDF] [doi:10.1109/MED.2006.3287822B2B2B2B2B2B] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Strongly monotone systems of ordinary differential equations which have a certain translation-invariance property are shown to have the property that all projected solutions converge to a unique equilibrium. This result may be seen as a dual of a well-known theorem of Mierczynski for systems that satisfy a conservation law. As an application, it is shown that enzymatic futile cycles have a global convergence property.


  6. D. Angeli, P. de Leenheer, and E.D. Sontag. On the structural monotonicity of chemical reaction networks. In Proc. IEEE Conf. Decision and Control, San Diego, Dec. 2006, pages 7-12, 2006. IEEE. [PDF] Keyword(s): monotone systems, systems biology, reaction networks, nonlinear stability, dynamical systems.
    Abstract:
    This paper derives new results for certain classes of chemical reaction networks, linking structural to dynamical properties. In particular, it investigates their monotonicity and convergence without making assumptions on the structure (e.g., mass-action kinetics) of the dynamical equations involved, and relying only on stoichiometric constraints. The key idea is to find a suitable set of coordinates under which the resulting system is cooperative. As a simple example, the paper shows that a phosphorylation/dephosphorylation process, which is involved in many signaling cascades, has a global stability property.


  7. D. Angeli and E.D. Sontag. An analysis of a circadian model using the small-gain approach to monotone systems. In Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, Dec. 2004, IEEE Publications, pages 575-578, 2004. [PDF] Keyword(s): circadian rhythms, tridiagonal systems, nonlinear dynamics, systems biology, reaction networks, oscillations, periodic behavior, monotone systems, delay-differential systems.
    Abstract:
    We show how certain properties of Goldbeter's original 1995 model for circadian oscillations can be proved mathematically. We establish global asymptotic stability, and in particular no oscillations, if the rate of transcription is somewhat smaller than that assumed by Goldbeter, but, on the other hand, this stability persists even under arbitrary delays in the feedback loop. We are mainly interested in illustrating certain mathematical techniques, including the use of theorems concerning tridiagonal cooperative systems and the recently developed theory of monotone systems with inputs and outputs.


  8. D. Angeli, P. de Leenheer, and E.D. Sontag. A tutorial on monotone systems- with an application to chemical reaction networks. In Proc. 16th Int. Symp. Mathematical Theory of Networks and Systems (MTNS 2004), CD-ROM, WP9.1, Katholieke Universiteit Leuven, 2004. [PDF] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Monotone systems are dynamical systems for which the flow preserves a partial order. Some applications will be briefly reviewed in this paper. Much of the appeal of the class of monotone systems stems from the fact that roughly, most solutions converge to the set of equilibria. However, this usually requires a stronger monotonicity property which is not always satisfied or easy to check in applications. Following work of J.F. Jiang, we show that monotonicity is enough to conclude global attractivity if there is a unique equilibrium and if the state space satisfies a particular condition. The proof given here is self-contained and does not require the use of any of the results from the theory of monotone systems. We will illustrate it on a class of chemical reaction networks with monotone, but otherwise arbitrary, reaction kinetics.


  9. D. Angeli, P. de Leenheer, and E.D. Sontag. Remarks on monotonicity and convergence in chemical reaction networks. In Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, Dec. 2004, IEEE Publications, pages 243-248, 2004. Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.


  10. D. Angeli and E.D. Sontag. A note on multistability and monotone I/O systems. In Proc. IEEE Conf. Decision and Control, Maui, Dec. 2003, IEEE Publications, 2003, pages 67-72, 2003. Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, monotone systems.


  11. D. Angeli and E.D. Sontag. A remark on monotone control systems. In Proc. IEEE Conf. Decision and Control, Las Vegas, Dec. 2002, IEEE Publications, pages 1876-1881, 2002.


  12. D. Angeli, E.D. Sontag, and Y. Wang. A note on input-to-state stability with input derivatives. In Proc. Nonlinear Control System Design Symposium, St. Petersburg, July 2001, pages 720-725, 2001. Keyword(s): input to state stability, ISS.


  13. M. Arcak, D. Angeli, and E.D. Sontag. Stabilization of cascades using integral input-to-state stability. In Proc. IEEE Conf. Decision and Control, Orlando, Dec. 2001, IEEE Publications, 2001, pages 3814-3819, 2001. Keyword(s): nonlinear control, feedback stabilization, input to state stability.


  14. B.P. Ingalls, D. Angeli, E.D. Sontag, and Y. Wang. Asymptotic characterizations of IOSS. In Proc. IEEE Conf. Decision and Control, Orlando, Dec. 2001, IEEE Publications, 2001, pages 881-886, 2001. Keyword(s): nonlinear control, feedback stabilization, input to state stability.


  15. D. Angeli and E.D. Sontag. Characterizations of forward completeness. In Proc. IEEE Conf. Decision and Control, Phoenix, Dec. 1999, IEEE Publications, 1999, pages 2551-2556, 1999.


  16. D. Angeli, E.D. Sontag, and Y. Wang. A remark on integral input to state stability. In Proc. IEEE Conf. Decision and Control, Tampa, Dec. 1998, IEEE Publications, 1998, pages 2491-2496, 1998. Keyword(s): input to state stability.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html