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Physicochemical modelling of cell signalling pathways
Bree B. Aldridge, John M. Burke, Douglas A. Lauffenburger and Peter K. Sorger

Physicochemical modelling of signal transduction links fundamental chemical and physical principles, prior knowledge about 
regulatory pathways, and experimental data of various types to create powerful tools for formalizing and extending traditional 
molecular and cellular biology.

This review is aimed at biologists interested in mathematical model-
ling of biochemical pathways, but who are relatively unfamiliar with 
the topic. Our discussion focuses on pathways involving ‘signals’ rather 
than metabolites. In this context, physicochemical modelling is a natural 
extension of informal or conceptual pathway modelling. Formal model-
ling is much more powerful in putting molecular detail in a physiological 
context, uncovering principles of biological design and creating dynamic 
repositories of interpretable knowledge. However, to realize this power, 
challenges inherent in construction, verification, calibration, interpreta-
tion and publication of models must be addressed.

MATHEMATICAL MODELS IN MOLECULAR, CELLULAR AND 
DEVELOPMENTAL BIOLOGY
Contemporary molecular, cellular and developmental biology seeks 
to describe physiological processes in terms of gene functions and 
specific molecular mechanism. Medicine and drug discovery add the 
practical goals of understanding disease and developing treatments. 
The ‘component identification’ phase of modern biology is approach-
ing completion, and the sheer size of the cellular ‘parts list’ highlights 
the importance of understanding function, not at the level of single 
genes, but rather at a higher level of abstraction, involving pathways 
and circuits. In many cases, conceptual modelling of biology is at the 
breaking point1 — it is impossible mentally to juggle large pathways 
involving many components. The missing ingredient is mathematics. 
Used appropriately, mathematical models can represent pathways in a 
physically and biologically realistic manner, incorporate a wide vari-
ety of empirical observations, and generate novel and useful hypoth-
eses. Pathway modelling has existed for some time, particularly in 
the field of prokaryotic metabolism2,3, but it remains at an early stage 
of development. It is challenging to construct accurate models and 
establish rigorous links to experimental data (see accompanying arti-
cle by Jaqaman et al. in Nature Rev. Mol. Cell Biol.). This commentary 
is based on the premise that useful models of critical mammalian 
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pathways can nonetheless be constructed using an iterative modify–
measure–mine–model procedure that closely integrates experiment and 
mathematics (Fig. 1).

APPROACHES TO PHYSICOCHEMICAL MODELLING
Physicochemical modelling seeks to describe biomolecular transforma-
tions (such as covalent modification, intermolecular association and 
intracellular localization) in terms of equations derived from estab-
lished physical and chemical theory4–8. These ‘kinetic’ or ‘reaction’ 
models use prior knowledge to make specific molecular predictions 
and work best with pathways in which components and connectivity are 
relatively well established. When prior knowledge is sparse, data-driven 
statistical models are more appropriate (see accompanying article by 
Janes et al. in Nature Rev. Mol. Cell Biol.). Equations in physicochemical 
models refer to identifiable processes (such as catalysis and assembly) 
and parameters have physical interpretation (such as concentration, 
binding affinity, and reaction rate). The models can be viewed as trans-
lations of familiar pathway maps into mathematical form — a process 
that should become easier and more transparent with the adoption of 
common schematic standards9.

The correct mathematical form for a physicochemical model depends 
on the properties of the system being studied and the goals of the model-
ling effort. Ordinary and partial differential equations (ODEs and PDEs) 
are most commonly and both can be cast in either deterministic or sto-
chastic form. Stochastic equations include effects arising from random 
fluctuation around the average behaviour. Currently, the most common 
means of representing biochemical pathways is through a set of coupled 
ODEs (an ODE network). ODE networks represent the rates of produc-
tion and consumption of individual biomolecular species, d[Xi]/dt, in 
terms of mass action kinetics — an empirical law stating that rates of 
a reaction are proportional to the concentrations of the reacting spe-
cies. Each biochemical transformation is therefore represented by an 
elementary reaction with forward and reverse rate constants. Changes 
in localization, a central feature of biological pathways, are represented 
by compartmentalization. Each species is allowed to inhabit one or 
more compartments and to move among the compartments through 
elementary reactions. Compartments are also used to represent assem-
bly of macromolecular complexes and other non-enzymatic changes of 
state. Two fundamental assumptions of the compartmentalized ODE 
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formalism are that: first, within a compartment, the concentration of 
each species is high and transport essentially instantaneous, that is, the 
compartment is well-mixed; and second, between compartments, trans-
port is slower and associated with an observable rate. If these assump-
tions are not satisfied, then it is necessary to model changes in species 
concentrations explicitly with respect to space (typically using PDEs).

Provided that reasonable values for rate constants and initial conditions 
(concentrations at t = 0) can be obtained, time integration of ODEs yields 
the concentrations of each species at subsequent times, thereby facilitating 
comparison of simulated and experimental time courses. ODE networks 
are amenable to a wide variety of analytic techniques, some of which are 
difficult, if not impossible, with more complex mathematical forms.

A conventional ODE represents a continuum approximation to reactions 
that actually involve interactions between individual molecules, which is a 
probabilistic process. The (bio)chemical master equation (CME)10 shows 
that random fluctuations in species concentration or reaction rates scale 
with (N)1/2, where N is the number of molecules of a given species in the 
relevant compartment. Continuum approximations may be considered 
valid when N is higher than 100–1000, yielding temporal variation of ~ 
(N)1/2N–1 = (N)–1/2 or ~3–10%; they prevail in models of cell signalling but 
are not suitable for describing microtubule or actin polymer dynamics11–14 
(see article by Karsenti et al. in this issue). However, considering the impor-
tance of macromolecular assembly and the prevalence of membranous and 
cytoskeletal elements in partitioning cells, even highly abundant proteins 
can be present in critical compartments at concentrations sufficiently low 
to produce stochastic behaviour. For example, stochastic fluctuations arise 
when abundant regulators of gene expression access a very small number 
of transcriptional initiation sites on DNA15. Stochastic effects also arise 
from very slow elementary reactions, because the generation of prod-
uct molecules is sufficiently separated in time as to seem discontinuous. 
Whether stochastic events in one compartment affect overall behaviour of 
a network depends critically on parameter values and network structure16. 
As a general rule in cell signalling models, it is reasonable to begin with 
continuum approximations and proceed to more complicated stochastic 
representations only as required.

MODEL DESIGN
Two critical decisions in the design of ODE models are specifying the scope 
and level of detail. Obviously, reaction models can only encompass a small 
subset of all reactions taking place in cells. If the scope is too small, predic-
tive power is lost; if the scope is too large, the uncertainty is overwhelming 
(Fig. 2). Thus, assumptions must be made about the extent to which spe-
cies included in the model evolve independently of species excluded from 
the model. The issue of model scope is usually cast in terms of modules 
— subsets of cellular reactions assumed to work together in the execution of 
discrete biochemical functions17. Little exists in the way of rigorous theoreti-
cal or empirical evidence for modularity in cell signalling pathways, but it 
is an assumption implicit in all molecular approaches, not just modelling. 
Indeed, uncertainty as to the components, connectivity and properties of 
pathways is a key motivation for undertaking rigorous, quantitative analy-
sis. For the foreseeable future, ad hoc assumptions are likely to determine 
the scope of most models, but as understanding of network architecture 
increases, we can expect much greater insight into modularity.

A second design decision in physicochemical modelling is the degree 
of detail (model granularity). As a first principle, and in the absence 
of countervailing evidence, the best model is the one that is most par-
simonious in species and parameters, while meeting the design goals. 
It is not possible to derive the functional properties of proteins and 
other biomolecules ab initio from their atomic structures — pathway 
models are not detailed physical representations. Conversely, relatively 
little molecular insight is gained when molecular processes are ‘lumped’ 
together to produce few species and equations. Therefore, most pathway 
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Figure 1 The modify–measure–mine–model paradigm in systems biology. A 
paradigm for systems biology research involving iterative cycles of experimental 
modification, measurement, data mining and mathematical modelling.
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Figure 2 Physicochemical modelling involves a trade off between increasing 
scope and falling detail. In this hypothetical representation, the scope of a 
model (the number of unique gene products) increases from left to right. 
The degree of mechanistic detail (green line) falls as more components 
are included, as many gene products are poorly studied. Physicochemical 
modelling involves a compromise between too narrow a scope and insufficient 
predictive power, and too wide a scope and overwhelming uncertainty. The 
result is an optimum (blue and black solid lines) at a scope below that of the 
complete proteome but that shifts to greater complexity over time (dotted lines) 
as more molecular data is collected (green dotted line). Overall, the optimal 
size for modelling will also increase with time (red line). It is interesting to note 
that the degree of predictive power that can be achieved at any scope depends 
on the quality of the data. Rich data resolved in time and space (blue lines) is 
considerably more valuable than single-time point static data (black lines).
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models operate at a mesoscale that is intermediate between complete 
microscopic enumeration and broad descriptive representation. Because 
practical modelling aims to make predictions that can be confirmed 
experimentally at the levels of genes and proteins, the number of unique 
gene products is a starting point for specifying model granularity.

Determining the correct granularity for a pathway model is com-
plicated by the fact that proteins assemble into large multi-component 
complexes, undergo extensive posttranslational modification and parti-
tion among multiple cellular compartments. If these processes are to be 
represented, the number of species in a model can increase dramatically 
relative to the number of gene products. In the case of the epidermal 
growth factor receptor (EGFR; a membrane-bound receptor tyrosine 
kinase that forms dimers with one of three other family members), 276 
distinct homodimeric species can arise from three binding partners and 
two phospho forms18. In actuality, EGFR has four transmembrane, eight 
intracellular binding partners and ten phosphorylation sites. More gen-
erally, if interacting molecules A and B can assume n and m distinct 

states respectively, the total number of states is 2n × 2m, and of bimolecular 
reactions is 2n–1 × 2m–1. This ‘combinatorial explosion’ argues in favour of 
models with many species. However, the greater the number of species 
in a model, the greater the degrees of freedom, and the larger the chance 
that parameters will be indeterminable. Therefore, models are frequently 
limited to a subset of possible species. If data support the functional 
equivalence of distinct biochemical forms, then ‘lumping’ them together 
is clearly warranted. Similarly, if assembly or multi-site modification is 
rapid and processive, then intermediate states can be ignored. However, in 
many situations, including EGFR signalling, the consequences of ignoring 
species are unknown and it is hard to establish a rigorous basis for opti-
mizing model granularity19,20. Thus, being explicit with respect to design 
goals and discussing the implications of complete and partial enumera-
tion of species for model performance is important.

Fortunately, even in highly granular models, it is rarely necessary to 
include detailed representations of every process. Core metabolic and 
synthetic pathways (such as energy production and gene transcription) 

Building mechanistic models involves a series of steps from model construction to validation. No existing software package can perform 
all of the steps, making it necessary to use multiple packages. This causes considerable difficulty because software from different sources 
is rarely inter-operable and methods for transporting models among software packages are incompletely developed. Here, we review the 
model assembly process and some available software but refer readers to an excellent recent review on the strengths and weaknesses of dif-
ferent packages42.

Model construction
Model construction typically involves the translation of prior knowledge into a list of reactants and reactions. Because large bodies of litera-
ture are rife with inconsistency and inaccuracy, expert interpretation and annotation are essential, despite the attractions of automatic text 
mining. One approach to codifying network topology is to manually write a list of differential equations. In many cases, this takes the form 
of a table of species, parameter values and comments. Manual methods become cumbersome and error prone as the number of equations 
grows. Graphical approaches simplify the process of transforming a network diagram into a set of linked equations. Most specialized software 
tools such as CellDesigner, JDesigner and SimBiology provide varying degrees of support for graphical model construction42.

A problem with both manual and graphical modelling approaches is that every change in granularity, and thus, in the number of equations 
and species, requires that the reaction list or schematic be redrawn. BioNetGen addresses this problem by constructing models automatically 
from a set of machine-readable rules.

Model verification
Model verification is necessary to establish that the equations comprising a model depict a network correctly, as it is understood from the 
literature (or experiments). Although conceptually straightforward, model construction is error prone: it is difficult to spot errors when 
mechanisms are complex and many species are involved. Unfortunately, formal tools for verifying models have not yet been developed and 
current practice involves manual analysis and checking for conservation of species in a list of reactions (using GEPASI, for example). No 
mechanism exists for certifying systems biology models, or even for verifying their underlying structure, although approaches in this direc-
tion have been proposed43.

Model calibration
Model calibration, or regression, is the process by which parameter values are estimated so as to achieve the design goals — in our case, 
as close a fit to data as possible. Jacobian and JSim are examples of software that perform parameter estimation. However, it is challenging 
experimentally to collect enough high quality data to effectively constrain parameter values. It is also difficult to evaluate the reliability of 
these constraints. Thus, most biological pathway models remain poorly calibrated.

Model validation
Model validation is the process of evaluating the ability of a calibrated model to meet post hoc constraints. In systems biology, this includes mak-
ing predictions that can be subjected to experimental test. Other less easily justified constraints include robustness, bistability and simplicity.

BOX 1  RESOURCES FOR BUILDING CELL-CIRCUIT MODELS

Sorger Focus.indd   1197Sorger Focus.indd   1197 16/10/06   13:28:5816/10/06   13:28:58

Nature  Publishing Group ©2006



1198  NATURE CELL BIOLOGY  VOLUME 8 | NUMBER 11 | NOVEMBER 2006 

R E V I E W SYSTEMS BIOLOGY: A USER’S GUIDE

can be introduced as simplified ‘lumped’ rates. At the same time, meta-
bolic and synthetic processes are themselves being subjected to quantita-
tive modelling. Thus, hybrid models can be constructed in which specific 
biological processes are alternately modelled in detail or in aggregate. For 
example, a highly simplified ‘lumped rate’ representation of a detailed 
metabolic model could be embedded in a physicochemical model of 

signal transduction to yield a hybrid. Realistic regulation could be repro-
duced by adding an adjustable parameter to the grouped metabolic model 
that makes metabolism dependent on signalling.

The issue of model granularity also arises with equations representing 
elementary reactions. For example, when a reaction is a hundred times or 
more faster than other reactions, it can be assumed that the fast process 

Pictogram

Pathway diagram

Reaction list Approximations

Differential equations

Figure 3 Steps in physicochemical modelling. A pathway map is a highly 
abstracted pictogram of biomolecules and their interactions. Here, a simple 
linear ligand–receptor–kinase–substrate pathway is depicted. Although the 
pictogram conveys the general information flow in the network, mechanistic 
details required for mathematical modelling are absent. A formal pathway 
diagram drawn with CellDesigner details the reaction network40. Instead of 
representing the kinase as one object (as in the pictogram), each form of 
the kinase, either in complex or alone, is depicted (K, K*, LR*K, and K*S). 
A key challenge in developing a pathway diagram is making choices about 
granularity in number of species and reactions (see text). In this example, the 
receptor is a dimer and each subunit has two phosphorylation sites, yielding 
64 possible ligand–receptor dimer complexes. However, this complexity is 
represented simply by two species: non-active and unphosphorylated (R) and 
ligand-bound, fully phosphorylated (LR*). It should be noted that approaches 
such as rules-based modelling may be preferred to the use of pathway 

diagrams (see text for details). A complete list of reactions is generated from 
the pathway diagram. This list can be automatically produced with several 
specialized software tools (Box 1). For reversible reactions, both forward 
and backward rate constants must be indicated. From the list of reactions, a 
system of differential equations is enumerated using appropriate rate laws, 
such as mass action kinetics, which uses the product of a rate constant 
and the concentrations of the reactants to calculate the reaction rates. 
Simplifying assumptions can be made to reduce the complexity or size of a 
model. The Michaelis-Menten approximation to enzyme–substrate kinetics 
is often applied. This particular rate form assumes rapid equilibrium of an 
intermediate complex (K*S), so that an equilibrium assumption is imposed 
(d[K*S]/dt = 0), thus reducing the number of species in the model. Because 
this is an approximation, its use can alter model behaviour, particularly when 
the intermediate complex does not reach equilibrium or the reaction is tightly 
coupled to other processes25–27.
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operates in equilibrium. Differential equations can then be substituted 
by time-independent algebraic relations21,22, resulting in a smaller model 
with more complex rate terms. A common example of algebraic substitu-
tion is replacing mass action kinetics with the Michaelis-Menten approxi-
mation (Fig. 3). Another example is representing a series of reactions as 
a ‘transfer function’ in which inputs (such as the concentrations of sub-
strates) are translated into outputs (such as rate of formation of products) 
through an assumed or fitted algebraic function. A common biological 
transfer function is a Hill function, which captures cooperative behaviour 
(for example, of an enzyme cascade) in a single exponential function6,23. 
Substitution of ODEs by transfer functions and other algebraic terms 
constitutes a very simple type of model order reduction — an important 
topic that is unfortunately beyond the scope of this commentary24. As 
with all model order reductions, it is important to ascertain whether the 
implied assumptions are valid. It is not always appreciated, for example, 
that Michaelis-Menten kinetics represents a simplification of mass action 
kinetics that are valid in equilibrium, but not necessarily in the case of 
rapidly evolving reactions (Fig. 3)25–27. Caution is also warranted when 
transfer functions are introduced for the purpose of model simplification, 
and the discovery of switch-like and other non-linear behaviour is then 
treated as an insight into mechanism. The non-linear behaviour can be 
implicit in the mathematical forms themselves (ultrasensitivity in models 
with Hill functions, for example). In our opinion, circuit-level properties 
(such as switching and robustness) are more interesting when discovered 
in the course of analysing models based only on elementary reactions and 
mass action kinetics, including their stochastic representations.

MODEL VERIFICATION, CALIBRATION AND VALIDATION
Once a preliminary model has been constructed it must be subjected 
to verification, calibration and validation. Verification is the process of 
determining how accurately prior knowledge and underlying assump-
tions have been translated into mathematical form (that is, whether the 
structure of the model is correct28,29). Calibration (also known as model 
regression or training) is the process by which parameters in a model 
are adjusted so as to match model performance to experimental data. 
Finally, model validation is the process of evaluating model performance 
against the primary design goal. In the case of biological models, this is 
usually a close match between model and experiment. Robustness and 
bistability are sometimes used as additional post hoc validation criteria; 
but only at the risk of introducing potentially incorrect bias.

The difficulty in assembling physicochemical models from pathway 
maps is frequently underestimated. The problem is not the mathematics 
itself, which in the case of ODEs is quite straightforward, but the sheer 
size, complexity and topological uncertainty of network diagrams. A wide 
variety of open source and commercial software has been developed to 
assist in translating diagrams into equations (Box 1). However, pathway 
maps are not necessarily the ideal starting point for modelling, as they 
ignore details of protein–protein association, particularly those that 
give rise to combinatorial complexity (Fig. 3). One attractive possibility, 
recently reviewed in detail19, is to construct models automatically from sets 
of rules that encapsulate prior knowledge in human and machine-read-
able from. Rule-based models are potentially more amenable to automatic 
verification and model composition (joining small models together) than 
models with hand-written equations. Rules can also be used to generate 
families of models compatible with prior knowledge, but that are divergent 
in structure. However, formal methods for optimizing model structure 

have not yet been widely applied to biological networks. Thus, the issue 
arises whether a particular model structure and set of parameter values is 
the only way to model the data. Unfortunately, for large models the issue 
of ‘model uniqueness’ is difficult to address conclusively.

Assuming that a model with correct components and connectivity 
has been constructed, the next critical step is determining the values 
of parameters — the rate constants and initial conditions. Parameters 
can be measured directly, particularly in the case of protein and mRNA 
concentrations, or obtained from the literature. Rate constants can also 
be measured in vitro, although it is debatable whether rates in dilute 
solution are similar to those in the crowded intracellular environment. 
Even when considerable experimental data are available, it is common 
for many parameters in a pathway model to remain unmeasured and 
require estimation. Estimation involves computing the range of param-
eter values over which the model most closely matches experimental 
observation, given uncertainty in the data. The difficulty and reliability 
of model regression is closely tied to the number of free parameters 
and to the amount and quality of training data. In the noise-free case, 
2n + 1 observations are needed to estimate n parameters in an ODE 
model, but the presence of noise makes the relationship between obser-
vation and parameter determinability more complex30. Regression with 
noisy data proceeds through a series of statistical tests whose power is 
proportional to the amount of data, and inversely proportional to the 
noise. Model calibration has the potential to yield either correct values or 
weakly determined values (the variable can take on a wide range of values 
without altering the goodness-of-fit to the observation). Unconstrained 
parameters are correctly regarded as ones about which modelling (and 
experimentation) give little insight. Moreover, parameters in complex 
models can be tightly coupled so that uncertainty in some parameters 
can affect many others (see accompanying article by Jaqaman et al. in 
Nature Rev. Mol. Cell Biol.).

Most physicochemical models, particularly those of eukaryotic net-
works, await rigorous regression, therefore parameter values are largely 
unconstrained. A useful starting point is to set values within physically 
plausible ranges and conservative catalytic rates, which we take to be: 
kf ~10–6 (number per cell) –1 sec–1; kr ~10–2–10–3 sec–1; kcat ~1–10 sec–1, 
Kd (for complexes) ~10–8 M and concentrations in the range of 103–106 
molecules per cell with a volume of 1 pl. Uncalibrated or partly calibrated 
models are useful for simulating results, but definitive conclusions can-
not be drawn about specific rates and species conentrations. In addi-
tion, different models, or models with the same structures but regressed 
against different sets of data, cannot be rigorously compared.

MODEL ANALYSIS
When model structure and parameter values have been determined or 
estimated, mathematical exploration and analysis can begin. Simulation 
is a simple but powerful tool for studying behaviour and guiding experi-
ment. Time-dependent concentrations of key species can be compared 
over a range of concentrations, network topologies and rate param-
eters (Box 2; parameter determinability affects the accuracy of these 
computed time courses). To simulate the effects of RNA interference 
(RNAi), for example, a model is run with experimentally derived con-
centrations for the depleted protein. To simulate the effects of a kinase 
inhibitor, the catalytic rate constant, or levels of bound ATP, are reduced. 
In each case, simulated data can be compared to data such as flow-cytom-
etry, quantitative western blotting and time-lapse microscopy31.

Sorger Focus.indd   1199Sorger Focus.indd   1199 16/10/06   13:29:0416/10/06   13:29:04

Nature  Publishing Group ©2006



1200  NATURE CELL BIOLOGY  VOLUME 8 | NUMBER 11 | NOVEMBER 2006 

R E V I E W SYSTEMS BIOLOGY: A USER’S GUIDE

Sensitivity analysis is a powerful method for systematically deter-
mining which concentrations and rate constants in a model have the 
biggest influence on overall behaviour. Both the objective function 
(such as maximum integrated output or rate of change of output) and 
the set of variables over which the sensitivity analysis is performed 
can be defined, as can the range of values to be evaluated. Because 
the objective function is typically sensitive to changes in multiple 
parameters, multidimensional sensitivity analysis is the preferred 
approach32,33. Sensitivity is often visualized as a landscape of ‘hills’ 
and ‘valleys’ representing areas of parameter space in which small 
changes have significant effects on behaviour. In addition to reveal-
ing key parameters in a network, sensitivity analysis is valuable in 
ascertaining which parameters should be the focus of direct meas-
urement or experimental perturbation. Insensitivity of a model to 
parameter variation has been equated with robustness, but robust-
ness is better defined with respect to the sensitivity of a model to 
noise, either in the experimental data or in stochastic reactions (in 
product design, robustness involves searching the space of adjust-
able parameters for values that minimize the influence of noise on 
system behaviour34; Fig. 4).

A second approach to analysing models is qualitative and based 
on determining the classes of behaviour it can produce (such as bi-
stability or oscillation). Sets of differential equations can be solved 
for stable and unstable steady states (that is, sets of parameter values 
for which the model does or does not return to a steady state when 
perturbed) by setting the rate of change to zero. Bifurcation analysis 

makes it possible to determine whether different trajectories through 
phase space lead to different qualitative behaviours around the steady 
state35. Stability and bifurcation analysis are of interest because they 
help explain how a network can switch between different states, (for 
example, ‘on’ and ‘off ’ states). However, in the case of transient proc-
esses, other techniques from dynamical systems theory are required 
to determine how the output of a model will change over time (or 
time and space) when initial conditions or parameter values change. 
These methods include singular-perturbation theory and finite-time 
Lyapunov exponents (Fig. 4)32,36.

CHALLENGES
Current challenges in building physicochemical pathway models 
include developing more efficient ways to summarize prior knowledge 
and specify model structure, as well as better methods for combin-
ing and sharing models. Rules-based model assembly is likely to be 
important in this area, as is the still evolving systems biology markup 
language (SBML; see Swedlow et al. in this issue)37. Implementing 
models as Web services should also facilitate model exploration by 
non-experts (Box 2). Additional important areas for the future are 
acquiring sufficiently rich data (see accompanying article by Albeck et 
al. in Nature Rev. Mol. Cell Biol.), careful assessment of data reliability 
and rigorous model calibration.

Models of the type described in this review are largely phenomeno-
logical in that they aim to reproduce empirical data, often with consider-
able descriptive complexity. These models are largely explored through 
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Figure 4 Sensitivity analysis and parameter estimation are context specific. 
Sensitivity analysis evaluates the relative importance of specific initial 
conditions and rate constants for model output. Typically, a sensitivity 
objective function, d[output]/d[parameter], is evaluated at a finite or 
integrated time and the parameter with the largest effects on output 
identified. Sensitivity is context specific, that is, it is performed around 
a particular operating point or set of parameters. However, calculating 
sensitivity by simultaneously altering multiple parameters provides a more 
global view of network behaviour. In either case, a challenge lies in choosing 
an appropriate objective function and operating point for evaluation. As 
an example, multiple parameter sensitivity analysis performed on a model 
of caspase-3 activation (by caspase-8 and inhibited by XIAP), shows a 
region of high sensitivity (blue, the separatrix) separating the two different 
outcomes of death and survival (reproduced with permission from32). The 
separatrix is invariant to the initial amount of inactive caspase-8, but 
not the active form or XIAP. The critical amount of caspase-8 or XIAP 

needed to alter behaviour is dependent on the initial conditions of the 
other network species. Individual parameter sensitivity analysis performed 
from three different locales of phase-space (low, medium, and high initial 
concentrations of XIAP shown in red, grey and green, respectively) shows 
high sensitivity exists near the separatrix (gray) to caspase-8, XIAP, and kd6 
(the rate constant associated with ubiquitination of caspase-3 by XIAP). 
Parameter estimation uses an objective function to optimize parameter sets, 
with the goal of fitting models to data. The results of parameter estimation 
are context specific (dependent on time, the parameters of the model 
and the objective function) and many methods exist (such as Monte-Carlo 
simulations) to ensure that the estimation does not end in a local minimum 
of the objective function41. The shape of the minimum is a reflection of 
parameter sensitivity — long, thin valleys are sensitive to some, but not all 
parameters. As with sensitivity analysis, parameter estimation can elucidate 
which parameters should be measured experimentally (in our case, kd6 is 
more important than k1).
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simulation and are experimentally evaluated in terms of their predictive 
power. Given the difficulty and cost associated with experimentation, good 
phenomenological models are valuable not only for basic research but also 
industry and medicine. However, it is important to ask whether phenom-
enological models are truly explanatory. Explanatory models yield insight 
into circuit design, network dynamics and biophysical mechanism, and 
advance general understanding of biology. Models can be phenomenologi-
cally rich and predictive without being immediately explanatory. Careful 
analysis, including analytical approximation and algebraic manipulation, 
is usually valuable in deriving general understanding.

A wide range of opinion exists as to what constitutes scientific explana-
tion38. Physicists typically seek explanations in terms of relatively few, but 
very powerful, and widely applicable theories. In contrast, biologists are 
often satisfied when the components of a process are enumerated, their 
connectivity determined and plausible (if not necessarily correct) bio-
physical principles invoked to describe mechanism. The large number of 
free variables in biochemical pathway models often provokes skepticism: 
“With four parameters I can fit an elephant, and with five I can make him 
wiggle his trunk” (a quip subsequently shown to be untrue — actually 
30 variables are necessary!)39. Clearly models should be formulated with 
as few species and free parameters as possible, but engineering models 
are often similar to biological models in having many variables. Pathway 
models in biology represent a compromise between excessive complex-
ity and too many degrees of freedom, and oversimplification and loss 
of mechanistic insight.

The issue of complexity is exacerbated by the difficulty in setting 
appropriate levels of biological abstraction. Ideally, all properties of a 
natural system would be deducible ab initio from fundamental physics. 
However, as physical systems become more complex they exhibit behav-
iours qualitatively different from those of simple systems. Fortunately, 

Once a model has been constructed (Box 1), it must be subjected to detailed analysis and shared.

Model analysis
Model analysis refers to a wide range of techniques for probing model dynamics, estimating parameter sensitivity and identifying bifurcations 
and hysteresis. Simulating the temporal dynamics of species X is a particularly simple form of analysis in which d[X]/dt is integrated with 
respect to time. However, it is common for a single gene product to be represented in a model by multiple species, reflecting changes in, for 
example, compartmentalization. If these species cannot be distinguished experimentally (for example, on a whole cell western blot), then 
it is necessary to re-aggregate the model into observables. This process suffers from the same complexities and potential sources of error as 
species enumeration during model construction. Many programs have built in functionality for regular analysis tasks, including manual 
re-aggregation (COPASI, JDesigner/Jarnac, JSim, Jacobian and SimBiology). Often, more specialized or customized analyses require the use 
of a flexible scientific computing language, such as Matlab.

Model publication and maintenance
Model publication and maintenance are critical steps in any modelling project, but remain remarkably cumbersome. A complete list of reac-
tions and parameter values is in principle sufficient to reconstruct a model, but only with considerable effort. As an alternative, code can be 
shared, but only with people using the same software package. Systems biology markup language (SBML) is being developed as a universal 
XML-compliant standard for exchanging modelling data, but XML is not well suited to describing algebraic relationships among variables. 
SBML lacks ‘roundtrip capability’42 and remains a work in progress. An alternative approach is to exchange rules rather than models, thereby 
avoiding code all together. A complementary approach, whose potential has been illustrated in genomic applications such as BLAST, is to 
provide models as web services in which simulation, sensitivity analysis, etc. are possible (although this does not help in the creation of model 
derivatives). VirtualCell and JSim both allow models to be accessed via the web. 

BOX 2  RESOURCES FOR ANALYSING AND SHARING CELL CIRCUIT MODELS

new axioms and theories can be formulated (for example, of solid 
matter) that are abstracted from, but compatible with, fundamental 
physical laws. In the physical sciences, great effort has gone into identi-
fying appropriate levels of abstraction, and abstraction in engineering is 
an essential feature of good design. In biology, genes, cells and organisms 
represent useful layers of abstraction, but the wide disparity of com-
plexity between genes and cells — the range at which pathway models 
operate – is not easily abstracted. Determining the most appropriate 
way to subdivide intracellular circuitry into discrete modules therefore 
remains a significant challenge. 

SUMMARY
Physicochemical models of biological pathways are attractive because their 
mathematics provides a means to merge prior knowledge with experimental 
data and underlying physical principles. Pathway models make it possible to 
examine in detail the effects of protein dysregulation and pharmacological 
intervention. Formal analysis should also help to uncover design features 
and common motifs, as well as reveal the extent to which pathways are 
truly modular. Models also have the potential to serve as transmittable 
repositories of knowledge. In our opinion, mathematical models, rather 
than databases, will dominate the dissemination of biological knowledge 
in the future. Our belief in the primacy of models is bolstered by historical 
experience with celestial mechanics, combustion chemistry, semiconductor 
fabrication and metabolic engineering. In each case, large sets of empirical 
data describing complex time-dependent processes were organized into 
models that evolved over time and gained considerable predictive power. 
As the models matured, they were adopted commercially as central com-
ponents of industrial design. By analogy, accurate biological models of cell 
signalling circuits are likely to have a key role in the future of pharmaceuti-
cal discovery and medical treatment. 
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Table 1 Glossary 

Biochemical master equa-
tion (CME)

Similar to a Markov process, the CME is a description of the stochastic state of a set of reactions and is specified as follows:

where x is the state vector listing the concentrations of each species, p is the probability that the species concentrations will be x at 
time t, r is the number of reactions, au is the probability that reaction u will take place and v is the change in x due to 
reaction u44,45.

Bifurcation analysis An analysis that shows how the qualitative behaviour of a model changes as a function of a few free parameters about the steady state.

Bistability The ability of a model to rest in two different stable states (usually an ‘on’ and ‘off’ state).

Calibration
The process of adjusting parameter values so that model responses are as close as possible to experimental data — sometimes referred
to as model regression or training

Decision tree analysis
Decision tree analysis creates a series of classifications that define sequential decision points based on a selected property or outcome 
of a model or empirical data.

Finite-time Lyapunov 
exponents

Also known as direct Lyapunov exponents (DLEs), these are a measure of parameter sensitivity analysis as multiple parameters change
simultaneously. To find highly sensitive regions of phase space, at a finite (chosen) time, DLEs measure the distance between neigh-
bouring trajectories, whose initial conditions were similar. DLEs are particularly useful in analysis of transient signalling.

Free parameters A parameter that can be changed when fitting the model (for example, rate constants, initial conditions and other algebraic constants).

Hill exponent
An exponent (h) that traditionally quantifies the extent of cooperative binding of multiple proteins, but is also used to describe sigmoi-
dal steepness: 

Indeterminable parameter A parameter that is difficult to fit with confidence and can result when a model is underconstrained.

Lumped parameter
A free parameter that represents a combination of parameters associated with elementary equations. Used to reduce the detail in a 
model

Mass-action kinetics
Mass action kinetics define chemical reaction rates as a product of a rate constant and the concentrations of the reactants. Both for-
ward and reverse rates can be specified (see Box 1 for examples).

Mesoscale models Models of an intermediate size that are neither purely empirical, nor contain complete mechanistic detail.

Michaelis-Menten kinet-
ics

An approximation of mass action kinetics typically used for enzyme–substrate interactions when the concentration of the substrate is in 
excess of the enzyme. Conservation of mass and applying the equilibrium assumption on the intermediate complex reduces the number
of equations (see Box 1 for an example).

Model order reduction Any mathematical procedure that reduces the number of equations and free parameters in a model with retaining the scope

Model parameters
Numbers in a model that supply the specific values for variables in equations and that are constant during a single execution, but that 
can change between executions.

Objective function
A function used to measure the ‘goodness’ of a model. A common example is deviation from an ideal behaviour, which we attempt to
minimize for parameter estimation.

Parameter estimation The regression process by which parameters are estimated by comparing model output to experimental data

Prediction An outcome obtained by executing a model and that has not yet been obtained experimentally or used in calibration

Prior knowledge Information that is available at the start of the modelling process and comprises part of the initial assumptions

Robustness Variously, the insensitivity of a model output to changes in parameter values or to noise

Sensitivity analysis Determining the change in model output associated with changes in parameter values (see Box 2).

Singular perturbation 
theory

Basis of principles used to separate model reactions into fast and slow reactions. This is especially useful in reducing model complexity
and evaluating transient signals.

Simulation
The process of using mathematical models to study the responses and properties of a system under differing conditions — usually dif-
ferent parameter values and occasionally different model structures

Transfer function A function that maps an input to an output value.

Web service A computational resource than can be accessed via the world wide web, typically using a web browser or other local client
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