Publications by Eduardo D. Sontag in year 1985 |
Articles in journal or book chapters |
This paper provides an introduction to definitions and known facts relating to the stabilization of parametrized families of linear systems using static and dynamic controllers. New results are given in the rational and polynomial cases. |
Let Ul, U2, ... be a sequence of observed random variables and (T1(U1),T2(Ul,U2),...) be a corresponding sequence of sufficient statistics (a sufficient sequence). Under certain regularity conditions, the sufficient sequence defines the input/output map of a time-varying, discrete-time nonlinear system. This system provides a recursive way of updating the sufficient statistic as new observations are made. Conditions are provided assuring that such a system evolves in a state space of minimal dimension. Several examples are provided to illustrate how this notion of dimensional minimality is related to other properties of sufficient sequences. The results can be used to verify the form of the minimum dimension (discrete-time) nonlinear filter associated with the autoregressive parameter estimation problem. |
The k-th alternation level of the theory of real numbers under addition and order is log-complete for the k-th level of the polynomial hierarchy. |
Conference articles |
We consider the problem of estimating a signal, which is known -- or assumed -- to be constant on each of the members of a partition of a square lattice into m unknown regions, from the observation of the signal plus Gaussian noise. This is a nonlinear estimation problem, for which it is not appropriate to use the conditional expectation as the estimate. We show that, at least in principle, the "maximum iikelihood estimator" (MLE) proposed by Geman and Geman lends itself to numerical computation using the annealing algorithm. We argue that the MLE by itself can be, under certain conditions (low signal to noise ratio), a very unsatisfactory estimator, in that it does worse than just deciding that the signal was zero. However, if combined with a rule which we propose, for deciding when to use and when to ignore it, the MLE can provide a reasonable suboptimal estimator. We then discuss preliminary numerical data obtained using the annealing method. These results indicate that: (a) the annealing algorithm performs remarkably well, and (b) a criterion can be formulated in terms of quantities computed from the observed image (without using a priori knowledge of the signal-to-noise ratio) for deciding when to keep the MLE. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibTEX by bibtex2html