BACK TO INDEX

Publications about 'singular perturbations'
Articles in journal or book chapters
  1. M.A. Al-Radhawi and E.D. Sontag. Analysis of a reduced model of epithelial-mesenchymal fate determination in cancer metastasis as a singularly-perturbed monotone system. In C.A. Beattie, P. Benner, M. Embree, S. Gugercin, and S. Lefteriu, editors, Realization and model reduction of dynamical systems. Springer Nature, 2022. Note: (Previous version: 2020 preprint in arXiv:1910.11311.). [PDF] Keyword(s): epithelial-mesenchymal transition, miRNA, singular perturbations, monotone systems, oncology, cancer, metastasis, reaction networks, reaction networks, systems biology.
    Abstract:
    Metastasis can occur after malignant cells transition from the epithelial phenotype to the mesenchymal phenotype. This transformation allows cells to migrate via the circulatory system and subsequently settle in distant organs after undergoing the reverse transition. The core gene regulatory network controlling these transitions consists of a system made up of coupled SNAIL/miRNA-34 and ZEB1/miRNA-200 subsystems. In this work, we formulate a mathematical model and analyze its long-term behavior. We start by developing a detailed reaction network with 24 state variables. Assuming fast promoter and mRNA kinetics, we then show how to reduce our model to a monotone four-dimensional system. For the reduced system, monotone dynamical systems theory can be used to prove generic convergence to the set of equilibria for all bounded trajectories. The theory does not apply to the full model, which is not monotone, but we briefly discuss results for singularly-perturbed monotone systems that provide a tool to extend convergence results from reduced to full systems, under appropriate time separation assumptions.


  2. M. Skataric, E.V. Nikolaev, and E.D. Sontag. A fundamental limitation to fold-change detection by biological systems with multiple time scales. IET Systems Biology, 9:1-15, 2015. [PDF] Keyword(s): adaptation, biological adaptation, perfect adaptation, singular perturbations, scale invariance, systems biology, transient behavior, symmetries, fcd, fold-change detection, incoherent feedforward loop, feedforward, IFFL.
    Abstract:
    The phenomenon of fold-change detection, or scale invariance, is exhibited by a variety of sensory systems, in both bacterial and eukaryotic signaling pathways. It has been often remarked in the systems biology literature that certain systems whose output variables respond at a faster time scale than internal components give rise to an approximate scale-invariant behavior, allowing approximate fold-change detection in stimuli. This paper establishes a fundamental limitation of such a mechanism, showing that there is a minimal fold-change detection error that cannot be overcome, no matter how large the separation of time scales is. To illustrate this theoretically predicted limitation, we discuss two common biomolecular network motifs, an incoherent feedforward loop and a feedback system, as well as a published model of the chemotaxis signaling pathway of Dictyostelium discoideum.


  3. A.C. Jiang, A. C. Ventura, E. D. Sontag, S. D. Merajver, A. J. Ninfa, and D. Del Vecchio. Load-induced modulation of signal transduction networks. Science Signaling, 4, issue 194:ra67, 2011. [PDF] Keyword(s): systems biology, reaction networks, synthetic biology, futile cycles, singular perturbations, modularity.
    Abstract:
    Biological signal transduction networks are commonly viewed as circuits that pass along in the process amplifying signals, enhancing sensitivity, or performing other signal-processing to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a its ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets


  4. D. Del Vecchio and E.D. Sontag. Engineering Principles in Bio-Molecular Systems: From Retroactivity to Modularity. European Journal of Control, 15:389-397, 2009. Note: Preliminary version appeared as paper MoB2.2 in Proceedings of the European Control Conference 2009, August 23-26, 2009, Budapest. [PDF] Keyword(s): systems biology, reaction networks, synthetic biology, futile cycles, singular perturbations, modularity.


  5. D. Del Vecchio, A.J. Ninfa, and E.D. Sontag. Modular Cell Biology: Retroactivity and Insulation. Molecular Systems Biology, 4:161, 2008. [PDF] Keyword(s): retroactivity, systems biology, reaction networks, synthetic biology, futile cycles, singular perturbations, modularity.
    Abstract:
    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input/output dynamic characteristics of transcriptional components, focusing on a property, which we call "retroactivity," that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter binding sites, or when the affinity of such binding sites is high. In order to attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation/dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast time scales of the phosphorylation and dephosphorylation reactions. Such a mechanism, when viewed as a signal transduction system, has thus an inherent capacity to provide insulation and hence to increase the modularity of the system in which it is placed.


  6. L. Wang and E.D. Sontag. On the number of steady states in a multiple futile cycle. Journal of Mathematical Biology, 57:29-52, 2008. [PDF] Keyword(s): singular perturbations, futile cycles, MAPK cascades, systems biology, reaction networks, multistability.
    Abstract:
    This note studies the number of positive steady states in biomolecular reactions consisting of activation/deactivation futile cycles, such as those arising from phosphorylations and dephosphorylations at each level of a MAPK cascade. It is shown that: (1) for some parameter ranges, there are at least n+1 (if n is even) or n (if n is odd) steady states; (2) there never are more than 2n-1 steady states (so, for n=2, there are no more than 3 steady states); (3) for parameters near the standard Michaelis-Menten quasi-steady state conditions, there are at most n+1 steady states; and (4) for parameters far from the standard Michaelis-Menten quasi-steady state conditions, there is at most one steady state.


  7. L. Wang and E.D. Sontag. Singularly perturbed monotone systems and an application to double phosphorylation cycles. J. Nonlinear Science, 18:527-550, 2008. [PDF] Keyword(s): singular perturbations, futile cycles, MAPK cascades, systems biology, reaction networks, nonlinear stability, nonlinear dynamics, multistability, monotone systems.
    Abstract:
    The theory of monotone dynamical systems has been found very useful in the modeling of some gene, protein, and signaling networks. In monotone systems, every net feedback loop is positive. On the other hand, negative feedback loops are important features of many systems, since they are required for adaptation and precision. This paper shows that, provided that these negative loops act at a comparatively fast time scale, the main dynamical property of (strongly) monotone systems, convergence to steady states, is still valid. An application is worked out to a double-phosphorylation "futile cycle" motif which plays a central role in eukaryotic cell signaling The workis heavily based on Fenichel-Jones geometric singular perturbation theory.


Conference articles
  1. M. Skataric, E.V. Nikolaev, and E.D. Sontag. Scale-invariance in singularly perturbed systems. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec. 2014, pages 3035-3040, 2014. [PDF] Keyword(s): adaptation, biological adaptation, perfect adaptation, singular perturbations, scale invariance, systems biology, transient behavior, symmetries, fcd, fold-change detection, incoherent feedforward loop, feedforward, IFFL.
    Abstract:
    This conference paper (a) summarizes material from "A fundamental limitation to fold-change detection by biological systems with multiple time scales" (IET Systems Biology 2014) and presents additional remarks regarding (b) expansion techniques to compute FCD error and (c) stochastic adaptation and FCD


  2. D. Del Vecchio, A.J. Ninfa, and E.D. Sontag. A Systems Theory with Retroactivity: Application to Transcriptional Modules. In Proceedings of the 2008 American Control Conference, Seattle, June 2008, pages Paper WeC04.1, 2008. [PDF] Keyword(s): retroactivity, systems biology, reaction networks, synthetic biology, futile cycles, singular perturbations, modularity.


  3. L. Wang and E.D. Sontag. Further results on singularly perturbed monotone systems, with an application to double phosphorylation cycles. In Proc. IEEE Conf. Decision and Control, New Orleans, Dec. 2007, pages 627-632, 2007. Note: Conference version of Singularly perturbed monotone systems and an application to double phosphorylation cycles.Keyword(s): singular perturbations, futile cycles, MAPK cascades, systems biology, reaction networks, nonlinear stability, nonlinear dynamics, multistability, monotone systems.


  4. L. Wang and E.D. Sontag. A remark on singular perturbations of strongly monotone systems. In Proc. IEEE Conf. Decision and Control, San Diego, Dec. 2006, pages 989-994, 2006. IEEE. [PDF] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, singular perturbations, monotone systems.
    Abstract:
    This paper deals with global convergence to equilibria, and in particular Hirsch's generic convergence theorem for strongly monotone systems, for singular perturbations of monotone systems.


  5. L. Wang and E.D. Sontag. Almost global convergence in singular perturbations of strongly monotone systems. In C. Commault and N. Marchand, editors, Positive Systems, pages 415-422, 2006. Springer-Verlag, Berlin/Heidelberg. Note: (Lecture Notes in Control and Information Sciences Volume 341, Proceedings of the second Multidisciplinary International Symposium on Positive Systems: Theory and Applications (POSTA 06) Grenoble, France). [PDF] [doi:10.1007/3-540-34774-7] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, singular perturbations, monotone systems.
    Abstract:
    This paper deals with global convergence to equilibria, and in particular Hirsch's generic convergence theorem for strongly monotone systems, for singular perturbations of monotone systems.


Internal reports
  1. J. Barton and E.D. Sontag. Remarks on the energy costs of insulators in enzymatic cascades. Technical report, http://arxiv.org/abs/1412.8065, December 2014. [PDF] Keyword(s): retroactivity, systems biology, reaction networks, futile cycles, singular perturbations, modularity.
    Abstract:
    The connection between optimal biological function and energy use, measured for example by the rate of metabolite consumption, is a current topic of interest in the systems biology literature which has been explored in several different contexts. In [J. P. Barton and E. D. Sontag, Biophys. J. 104, 6 (2013)], we related the metabolic cost of enzymatic futile cycles with their capacity to act as insulators which facilitate modular interconnections in biochemical networks. There we analyzed a simple model system in which a signal molecule regulates the transcription of one or more target proteins by interacting with their promoters. In this note, we consider the case of a protein with an active and an inactive form, and whose activation is controlled by the signal molecule. As in the original case, higher rates of energy consumption are required for better insulator performance.


  2. J. Barton and E.D. Sontag. The energy costs of biological insulators. Technical report, http://arxiv.org/abs/1210.3809, October 2012. Keyword(s): retroactivity, systems biology, reaction networks, futile cycles, singular perturbations, modularity.
    Abstract:
    Biochemical signaling pathways can be insulated from impedance and competition effects through enzymatic "futile cycles" which consume energy, typically in the form of ATP. We hypothesize that better insulation necessarily requires higher energy consumption, and provide evidence, through the computational analysis of a simplified physical model, to support this hypothesis.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:36 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html