Abstract:
Certain mass-action kinetics models of biochemical reaction networks, although described by nonlinear differential equations, may be partially viewed as state-dependent linear time-varying systems, which in turn may be modeled by convex compact valued positive linear differential inclusions. A result is provided on asymptotic stability of such inclusions, and applied to biochemical reaction networks with inflows and outflows. Included is also a characterization of exponential stability of general homogeneous switched systems |