Abstract:
For systems whose output is to be kept small (thought of as an error output), the notion of input to output stability (IOS) arises. Alternatively, when considering a system whose output is meant to provide information about the state (i.e. a measurement output), one arrives at the detectability notion of output to state stability (OSS). Combining these concepts, one may consider a system with two types of outputs, an error and a measurement. This leads naturally to a notion of partial detectability which we call measurement to error stability (MES). This property characterizes systems in which the error signal is detectable through the measurement signal. This paper provides a partial Lyapunov characterization of the MES property. A closely related property of stability in three measures (SIT) is introduced, which characterizes systems for which the error decays whenever it dominates the measurement. The SIT property is shown to imply MES, and the two are shown to be equivalent under an additional boundedness assumption. A nonsmooth Lyapunov characterization of the SIT property is provided, which yields the partial characterization of MES. The analysis is carried out on systems described by differential inclusions -- implicitly incorporating a disturbance input with compact value-set. |