BACK TO INDEX

Publications about 'immune system'
Articles in journal or book chapters
  1. A.P. Tran, M.A. Al-Radhawi, I. Kareva, J. Wu, D.J. Waxman, and E.D. Sontag. Delicate balances in cancer chemotherapy: Modeling immune recruitment and emergence of systemic drug resistance. Frontiers in Immunology, 11:1376-, 2020. [PDF] [doi:10.3389/fimmu.2020.01376] Keyword(s): metronomic chemotherapy, cyclophosphamide, mathematical modeling, immune recruitment, cancer, resistance, oncology, immunology, systems biology.
    Abstract:
    Metronomic chemotherapy can drastically enhance immunogenic tumor cell death. However, the responsible mechanisms are still incompletely understood. Here, we develop a mathematical model to elucidate the underlying complex interactions between tumor growth, immune system activation, and therapy-mediated immunogenic cell death. Our model is conceptually simple, yet it provides a surprisingly excellent fit to empirical data obtained from a GL261 mouse glioma model treated with cyclophosphamide on a metronomic schedule. The model includes terms representing immune recruitment as well as the emergence of drug resistance during prolonged metronomic treatments. Strikingly, a fixed set of parameters, not adjusted for individuals nor for drug schedule, excellently recapitulates experimental data across various drug regimens, including treatments administered at intervals ranging from 6 to 12 days. Additionally, the model predicts peak immune activation times, rediscovering experimental data that had not been used in parameter fitting or in model construction. The validated model was then used to make predictions about expected tumor-immune dynamics for novel drug administration schedules. Notably, the validated model suggests that immunostimulatory and immunosuppressive intermediates are responsible for the observed phenomena of resistance and immune cell recruitment, and thus for variation of responses with respect to different schedules of drug administration.


  2. E.D. Sontag. A dynamical model of immune responses to antigen presentation predicts different regions of tumor or pathogen elimination. Cell Systems, 4:231-241, 2017. [PDF] Keyword(s): scale invariance, fold change detection, T cells, incoherent feedforward loops, immunology, cancer, internal model principle, incoherent feedforward loop, feedforward, IFFL, systems biology.
    Abstract:
    Since the early 1990s, many authors have independently suggested that self/nonself recognition by the immune system might be modulated by the rates of change of antigen challenges. This paper introduces an extremely simple and purely conceptual mathematical model that allows dynamic discrimination of immune challenges. The main component of the model is a motif which is ubiquitous in systems biology, the incoherent feedforward loop, which endows the system with the capability to estimate exponential growth exponents, a prediction which is consistent with experimental work showing that exponentially increasing antigen stimulation is a determinant of immune reactivity. Combined with a bistable system and a simple feedback repression mechanism, an interesting phenomenon emerges as a tumor growth rate increases: elimination, tolerance (tumor growth), again elimination, and finally a second zone of tolerance (tumor escape). This prediction from our model is analogous to the ``two-zone tumor tolerance'' phenomenon experimentally validated since the mid 1970s. Moreover, we provide a plausible biological instantiation of our circuit using combinations of regulatory and effector T cells.


  3. Y. Vodovotz, A. Xia, E. Read, J. Bassaganya-Riera, D.A. Hafler, E.D. Sontag, J. Wang, J.S. Tsang, J.D. Day, S. Kleinstein, A.J. Butte, M.C. Altman, R. Hammond, C. Benoist, and S.C. Sealfon. Solving Immunology?. Trends in Immunology, 38:116-127, 2017. [PDF] Keyword(s): Immunology.
    Abstract:
    Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. This paper presents perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop `Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies.


Internal reports
  1. A. P. Tran, M. A. Al-Radhawi, I. Kareva, J. Wu, D. J. Waxman, and E. D. Sontag. Delicate balances in cancer chemotherapy: modeling immune recruitment and emergence of systemic drug resistance. Technical report, Cold Spring Harbor Laboratory, 2019. Note: BioRxiv 2019.12.12.874891. Keyword(s): chemotherapy, immunology, immune system, oncology, cancer, metronomic.
    Abstract:
    Metronomic chemotherapy can drastically enhance immunogenic tumor cell death. However, the responsible mechanisms are still incompletely understood. Here, we develop a mathematical model to elucidate the underlying complex interactions between tumor growth, immune system activation, and therapy-mediated immunogenic cell death. Our model is conceptually simple, yet it provides a surprisingly excellent fit to empirical data obtained from a GL261 mouse glioma model treated with cyclophosphamide on a metronomic schedule. The model includes terms representing immune recruitment as well as the emergence of drug resistance during prolonged metronomic treatments. Strikingly, a fixed set of parameters, not adjusted for individuals nor for drug schedule, excellently recapitulates experimental data across various drug regimens, including treatments administered at intervals ranging from 6 to 12 days. Additionally, the model predicts peak immune activation times, rediscovering experimental data that had not been used in parameter fitting or in model construction. The validated model was then used to make predictions about expected tumor-immune dynamics for novel drug administration schedules. Notably, the validated model suggests that immunostimulatory and immunosuppressive intermediates are responsible for the observed phenomena of resistance and immune cell recruitment, and thus for variation of responses with respect to different schedules of drug administration.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:36 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html