BACK TO INDEX

Publications about 'epigenetics'
Articles in journal or book chapters
  1. M.A. Al-Radhawi, S. Tripathi, Y. Zhang, E.D. Sontag, and H. Levine. Epigenetic factor competition reshapes the EMT landscape. Proc Natl Acad Sci USA, 119:e2210844119, 2022. [WWW] [PDF] Keyword(s): gene networks, Epithelial-Mesenchymal Transition, EMT, epigenetics, systems biology, cancer.
    Abstract:
    The emergence of and transitions between distinct phenotypes in isogenic cells can be attributed to the intricate interplay of epigenetic marks, external signals, and gene regulatory elements. These elements include chromatin remodelers, histone modifiers, transcription factors, and regulatory RNAs. Mathematical models known as Gene Regulatory Networks (GRNs) are an increasingly important tool to unravel the workings of such complex networks. In such models, epigenetic factors are usually proposed to act on the chromatin regions directly involved in the expression of relevant genes. However, it has been well-established that these factors operate globally and compete with each other for targets genome-wide. Therefore, a perturbation of the activity of a regulator can redistribute epigenetic marks across the genome and modulate the levels of competing regulators. In this paper, we propose a conceptual and mathematical modeling framework that incorporates both local and global competition effects between antagonistic epigenetic regulators in addition to local transcription factors, and show the counter-intuitive consequences of such interactions. We apply our approach to recent experimental findings on the Epithelial-Mesenchymal Transition (EMT). We show that it can explain the puzzling experimental data as well provide new verifiable predictions.


  2. T. Chen, M.A. Al-Radhawi, and E.D. Sontag. A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Epigenetics, 15:1-22, 2020. Note: PMID: 32842865. [PDF] [doi:10.1080/15592294.2020.1805686] Keyword(s): methylation, differentiation, epigenetics, pluripotent cells, gene regulatory networks, bistability, bistability, systems biology.
    Abstract:
    Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation, with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The ``Basin of Attraction percentage'' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that methylation plays in enhancing the stability of the silenced gene state.


  3. M. A. Al-Radhawi, D. Del Vecchio, and E. D. Sontag. Multi-modality in gene regulatory networks with slow gene binding. PLoS Computational Biology, 15:e1006784, 2019. [PDF] Keyword(s): multistability, gene networks, Markov Chains, Master Equation, cancer heterogeneity, phenotypic variation, nonlinear systems, stochastic systems, epigenetics, chemical master equations, systems biology.
    Abstract:
    In biological processes such as embryonic development, hematopoietic cell differentiation, and the arising of tumor heterogeneity and consequent resistance to therapy, mechanisms of gene activation and deactivation may play a role in the emergence of phenotypically heterogeneous yet genetically identical (clonal) cellular populations. Mathematically, the variability in phenotypes in the absence of genetic variation can be modeled through the existence of multiple metastable attractors in nonlinear systems subject with stochastic switching, each one of them associated to an alternative epigenetic state. An important theoretical and practical question is that of estimating the number and location of these states, as well as their relative probabilities of occurrence. This paper focuses on a rigorous analytic characterization of multiple modes under slow promoter kinetics, which is a feature of epigenetic regulation. It characterizes the stationary distributions of Chemical Master Equations for gene regulatory networks as a mixture of Poisson distributions. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations and a trans-differentiation network.


  4. J.M. Greene, J.L. Gevertz, and E. D. Sontag. A mathematical approach to distinguish spontaneous from induced evolution of drug resistance during cancer treatment. JCO Clinical Cancer Informatics, DOI: 10.1200/CCI.18.00087:1-20, 2019. [PDF] Keyword(s): cancer heterogeneity, phenotypic variation, nonlinear systems, epigenetics, oncology, cancer, systems biology.
    Abstract:
    Resistance to chemotherapy is a major impediment to the successful treatment of cancer. Classically, resistance has been thought to arise primarily through random genetic mutations, after which mutated cells expand via Darwinian selection. However, recent experimental evidence suggests that the progression to resistance need not occur randomly, but instead may be induced by the therapeutic agent itself. This process of resistance induction can be a result of genetic changes, or can occur through epigenetic alterations that cause otherwise drug-sensitive cancer cells to undergo "phenotype switching". This relatively novel notion of resistance further complicates the already challenging task of designing treatment protocols that minimize the risk of evolving resistance. In an effort to better understand treatment resistance, we have developed a mathematical modeling framework that incorporates both random and drug-induced resistance. Our model demonstrates that the ability (or lack thereof) of a drug to induce resistance can result in qualitatively different responses to the same drug dose and delivery schedule. The importance of induced resistance in treatment response led us to ask if, in our model, one can determine the resistance induction rate of a drug for a given treatment protocol. Not only could we prove that the induction parameter in our model is theoretically identifiable, we have also proposed a possible in vitro experiment which could practically be used to determine a treatment's propensity to induce resistance.


Conference articles
  1. M. Ali Al-Radhawi, K. Manoj, D. Jatkar, A. Duvall, D. Del Vecchio, and E.D. Sontag. Competition for binding targets results in paradoxical effects for simultaneous activator and repressor action. In Proc. 63rd IEEE Conference on Decision and Control (CDC), 2024. Note: To appear. Preprint in arXiv.[PDF] Keyword(s): resource competition, epigenetics, systems biology, synthetic biology, gene regulatory systems.
    Abstract:
    In the context of epigenetic transformations in cancer metastasis, a puzzling effect was recently discovered, in which the elimination (knock-out) of an activating regulatory element leads to increased (rather than decreased) activity of the element being regulated. It has been postulated that this paradoxical behavior can be explained by activating and repressing transcription factors competing for binding to other possible targets. It is very difficult to prove this hypothesis in mammalian cells, due to the large number of potential players and the complexity of endogenous intracellular regulatory networks. Instead, this paper analyzes this issue through an analogous synthetic biology construct which aims to reproduce the paradoxical behavior using standard bacterial gene expression networks. The paper first reviews the motivating cancer biology work, and then describes a proposed synthetic construct. A mathematical model is formulated, and basic properties of uniqueness of steady states and convergence to equilibria are established, as well as an identification of parameter regimes which should lead to observing such paradoxical phenomena (more activator leads to less activity at steady state). A proof is also given to show that this is a steady-state property, and for initial transients the phenomenon will not be observed. This work adds to the general line of work of resource competition in synthetic circuits.


Internal reports
  1. J.L. Gevertz, J.M. Greene, and E.D. Sontag. Validation of a mathematical model of cancer incorporating spontaneous and induced evolution to drug resistance. Technical report, Cold Spring Harbor Laboratory, 2019. Note: BioRxiv preprint 10.1101/2019.12.27.889444. Keyword(s): cancer heterogeneity, phenotypic variation, nonlinear systems, epigenetics, optimal control theory, oncology, cancer.
    Abstract:
    This paper continues the study of a model which was introduced in earlier work by the authors to study spontaneous and induced evolution to drug resistance under chemotherapy. The model is fit to existing experimental data, and is then validated on additional data that had not been used when fitting. In addition, an optimal control problem is studied numerically.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:36 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html