Publications about 'dose response' |
Articles in journal or book chapters |
This paper introduces the notion of cumulative dose response (cDR). The cDR is the area under the plot of a response variable, an integral taken over a fixed time interval and seen as a function of an input parameter. This work was motivated by the accumulation of cytokines resulting from T cell stimulation, where a non-monotonic cDR has been observed experimentally. However, the notion is of general applicability. A surprising conclusion is that incoherent feedforward loops studied in the systems biology literature, though capable of non-monotonic dose responses, can be mathematically shown to always result in monotonic cDR. |
It is well known that the presence of an incoherent feedforward loop (IFFL) in a network may give rise to a steady state non-monotonic dose response. This note shows that the converse implication does not hold. It gives an example of a three-dimensional system that has no IFFLs, yet its dose response is bell-shaped. It also studies under what conditions the result is true for two-dimensional systems, in the process recovering, in far more generality, a result given in the T-cell activation literature. |
Conference articles |
Steady state non-monotonic ("biphasic") dose responses are often observed in experimental biology, which raises the control theoretic question of identifying which possible mechanisms might underlie such behaviors. It is well known that the presence of an incoherent feedforward loop (IFFL) in a network may give rise to a non-monotonic response, and it has been informally conjectured that this condition is also necessary. However, this conjecture has been disproved with an example of a system in which input and output nodes are the same. In this paper, we show that the converse implication does hold when the input and output are distinct. Towards this aim, we give necessary and sufficient conditions for when minors of a symbolic matrix have mixed signs. Finally, we study in full generality when a model of immune T-cell activation could exhibit a steady state non-monotonic dose response. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibTEX by bibtex2html