Publications about 'discontinuous feedback' |
Articles in journal or book chapters |
This paper shows that any globally asymptotically controllable system on any smooth manifold can be globally stabilized by a state feedback. Since discontinuous feedbacks are allowed, solutions are understood in the ``sample and hold'' sense introduced by Clarke-Ledyaev-Sontag-Subbotin (CLSS). This work generalizes the CLSS Theorem, which is the special case of our result for systems on Euclidean space. We apply our result to the input-to-state stabilization of systems on manifolds relative to actuator errors, under small observation noise. |
In this expository paper, we deal with several questions related to stability and stabilization of nonlinear finite-dimensional continuous-time systems. We review the basic problem of feedback stabilization, placing an emphasis upon relatively new areas of research which concern stability with respect to "noise" (such as errors introduced by actuators or sensors). The table of contents is as follows: Review of Stability and Asymptotic Controllability, The Problem of Stabilization, Obstructions to Continuous Stabilization, Control-Lyapunov Functions and Artstein's Theorem, Discontinuous Feedback, Nonsmooth CLF's, Insensitivity to Small Measurement and Actuator Errors, Effect of Large Disturbances: Input-to-State Stability, Comments on Notions Related to ISS. |
This paper provides a precise result which shows that insensitivity to small measurement errors in closed-loop stabilization can be attained provided that the feedback controller ignores observations during small time intervals. |
Conference articles |
We showned in another recent paper that any asymptotically controllable system can be stabilized by means of a certain type of discontinuous feedback. The feedback laws constructed in that work are robust with respect to actuator errors as well as to perturbations of the system dynamics. A drawback, however, is that they may be highly sensitive to errors in the measurement of the state vector. This paper addresses this shortcoming, and shows how to design a dynamic hybrid stabilizing controller which, while preserving robustness to external perturbations and actuator error, is also robust with respect to measurement error. This new design relies upon a controller which incorporates an internal model of the system driven by the previously constructed feedback. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibTEX by bibtex2html