BACK TO INDEX

Publications about 'detectability'
Articles in journal or book chapters
  1. E.D. Sontag. Input to state stability: Basic concepts and results. In P. Nistri and G. Stefani, editors, Nonlinear and Optimal Control Theory, pages 163-220. Springer-Verlag, Berlin, 2007. [PDF] Keyword(s): input to state stability, stability, input to state stability, nonlinear systems, detectability, nonlinear regulation.
    Abstract:
    This expository presentation, prepared for a summer course, addresses the precise formulation of questions of robustness with respect to disturbances, using the paradigm of input to state stability. It provides an intuitive and informal presentation of the main concepts.


  2. J. L. Mancilla-Aguilar, R. Garcìa, E.D. Sontag, and Y. Wang. On the representation of switched systems with inputs by perturbed control systems. Nonlinear Anal., 60(6):1111-1150, 2005. [PDF]
    Abstract:
    This paper provides representations of switched systems described by controlled differential inclusions, in terms of perturbed control systems. The control systems have dynamics given by differential equations, and their inputs consist of the original controls together with disturbances that evolve in compact sets; their sets of maximal trajectories contain, as a dense subset, the set of maximal trajectories of the original system. Several applications to control theory, dealing with properties of stability with respect to inputs and of detectability, are derived as a consequence of the representation theorem.


  3. D. Angeli, B.P. Ingalls, E.D. Sontag, and Y. Wang. Separation principles for input-output and integral-input-to-state stability. SIAM J. Control Optim., 43(1):256-276, 2004. [PDF] [doi:http://dx.doi.org/10.1137/S0363012902419047] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, input to output stability.
    Abstract:
    We present new characterizations of input-output-to-state stability. This is a notion of detectability formulated in the ISS framework. Equivalent properties are presented in terms of asymptotic estimates of the state trajectories based on the magnitudes of the external input and output signals. These results provide a set of "separation principles" for input-output-to-state stability , characterizations of the property in terms of weaker stability notions. When applied to the closely related notion of integral ISS, these characterizations yield analogous results.


  4. D. Angeli, B.P. Ingalls, E.D. Sontag, and Y. Wang. Uniform global asymptotic stability of differential inclusions. J. Dynam. Control Systems, 10(3):391-412, 2004. [PDF] [doi:http://dx.doi.org/10.1023/B:JODS.0000034437.54937.7f] Keyword(s): differential inclusions.
    Abstract:
    The stability of differential inclusions defined by locally Lipschitz compact valued maps is addressed. It is shown that if such a differential inclusion is globally asymptotically stable, then in fact it is uniformly globally asymptotically stable (with respect to initial states in compacts). This statement is trivial for differential equations, but here we provide the extension to compact (not necessarily convex) valued differential inclusions. The main result is presented in a context which is useful for control-theoretic applications: a differential inclusion with two outputs is considered, and the result applies to the property of global error detectability.


  5. M. Chaves and E.D. Sontag. State-Estimators for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type. European J. Control, 8:343-359, 2002. [PDF] Keyword(s): observability, zero-deficiency networks, systems biology, reaction networks, observers, nonlinear stability, dynamical systems.
    Abstract:
    This paper provides a necessary and sufficient condition for detectability, and an explicit construction of observers when this condition is satisfied, for chemical reaction networks of the Feinberg-Horn-Jackson zero deficiency type.


  6. M. Krichman and E.D. Sontag. Characterizations of detectability notions in terms of discontinuous dissipation functions. Internat. J. Control, 75(12):882-900, 2002. [PDF] Keyword(s): input to state stability, detectability, input to output stability, detectability.
    Abstract:
    We consider a new Lyapunov-type characterization of detectability for nonlinear systems without controls, in terms of lower-semicontinuous (not necessarily smooth, or even continuous) dissipation functions, and prove its equivalence to the GASMO (global asymptotic stability modulo outputs) and UOSS (uniform output-to-state stability) properties studied in previous work. The result is then extended to provide a construction of a discontinuous dissipation function characterization of the IOSS (input-to-state stability) property for systems with controls. This paper complements a recent result on smooth Lyapunov characterizations of IOSS. The utility of non-smooth Lyapunov characterizations is illustrated by application to a well-known transistor network example.


  7. D. Liberzon, A. S. Morse, and E.D. Sontag. Output-input stability and minimum-phase nonlinear systems. IEEE Trans. Automat. Control, 47(3):422-436, 2002. [PDF] Keyword(s): input to state stability, detectability, minimum-phase systems, ISS, nonlinear control, minimum phase, adaptive control.
    Abstract:
    This paper introduces and studies a new definition of the minimum-phase property for general smooth nonlinear control systems. The definition does not rely on a particular choice of coordinates in which the system takes a normal form or on the computation of zero dynamics. In the spirit of the ``input-to-state stability'' philosophy, it requires the state and the input of the system to be bounded by a suitable function of the output and derivatives of the output, modulo a decaying term depending on initial conditions. The class of minimum-phase systems thus defined includes all affine systems in global normal form whose internal dynamics are input-to-state stable and also all left-invertible linear systems whose transmission zeros have negative real parts. As an application, we explain how the new concept enables one to develop a natural extension to nonlinear systems of a basic result from linear adaptive control.


  8. E.D. Sontag and B.P. Ingalls. A small-gain theorem with applications to input/output systems, incremental stability, detectability, and interconnections. J. Franklin Inst., 339(2):211-229, 2002. [PDF] Keyword(s): input to state stability, ISS, Small-Gain Theorem, small gain.
    Abstract:
    A general ISS-type small-gain result is presented. It specializes to a small-gain theorem for ISS operators, and it also recovers the classical statement for ISS systems in state-space form. In addition, we highlight applications to incrementally stable systems, detectable systems, and to interconnections of stable systems.


  9. E.D. Sontag. The ISS philosophy as a unifying framework for stability-like behavior. In Nonlinear control in the year 2000, Vol. 2 (Paris), volume 259 of Lecture Notes in Control and Inform. Sci., pages 443-467. Springer, London, 2001. [PDF] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, input to output stability.
    Abstract:
    (This is an expository paper prepared for a plenary talk given at the Second Nonlinear Control Network Workshop, Paris, June 9, 2000.) The input to state stability (ISS) paradigm is motivated as a generalization of classical linear systems concepts under coordinate changes. A summary is provided of the main theoretical results concerning ISS and related notions of input/output stability and detectability. A bibliography is also included, listing extensions, applications, and other current work.


  10. M. Krichman, E.D. Sontag, and Y. Wang. Input-output-to-state stability. SIAM J. Control Optim., 39(6):1874-1928, 2001. [PDF] [doi:http://dx.doi.org/10.1137/S0363012999365352] Keyword(s): input to state stability.
    Abstract:
    This work explores Lyapunov characterizations of the input-output-to-state stability (IOSS) property for nonlinear systems. The notion of IOSS is a natural generalization of the standard zero-detectability property used in the linear case. The main contribution of this work is to establish a complete equivalence between the input-output-to-state stability property and the existence of a certain type of smooth Lyapunov function. As corollaries, one shows the existence of "norm-estimators", and obtains characterizations of nonlinear detectability in terms of relative stability and of finite-energy estimates.


  11. E.D. Sontag and Y. Wang. Output-to-state stability and detectability of nonlinear systems. Systems Control Lett., 29(5):279-290, 1997. [PDF] [doi:http://dx.doi.org/10.1016/S0167-6911(97)90013-X] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, detectability, output to state stability, detectability, input to state stability.
    Abstract:
    The notion of input-to-state stability (ISS) has proved to be useful in nonlinear systems analysis. This paper discusses a dual notion, output-to-state stability (OSS). A characterization is provided in terms of a dissipation inequality involving storage (Lyapunov) functions. Combining ISS and OSS there results the notion of input/output-to-state stability (IOSS), which is also studied and related to the notion of detectability, the existence of observers, and output injection.


  12. P.P. Khargonekar and E.D. Sontag. On the relation between stable matrix fraction factorizations and regulable realizations of linear systems over rings. IEEE Trans. Automat. Control, 27(3):627-638, 1982. [PDF] Keyword(s): systems over rings, systems over rings, parametric classes of systems.
    Abstract:
    Various types of transfer matrix factorizations are of interest when designing regulators for generalized types of linear systems (delay differential. 2-D, and families of systems). This paper studies the existence of stable and of stable proper factorizations, in the context of the thery of systems over rings. Factorability is related to stabilizability and detectability properties of realizations of the transfer matrix. The original formulas for coprime factorizations (which are valid, in particular, over the field of reals) were given in this paper.


  13. E.D. Sontag. Conditions for abstract nonlinear regulation. Inform. and Control, 51(2):105-127, 1981. [PDF] Keyword(s): feedback stabilization, nonlinear systems, real-analytic functions.
    Abstract:
    A paper that introduces a separation principle for general finite dimensional analytic continuous-time systems, proving the equivalence between existence of an output regulator (which is an abstract dynamical system) and certain "0-detectability" and asymptotic controllability assumptions.


  14. M. L. J. Hautus and E.D. Sontag. An approach to detectability and observers. In Algebraic and geometric methods in linear systems theory (AMS-NASA-NATO Summer Sem., Harvard Univ., Cambridge, Mass., 1979), volume 18 of Lectures in Appl. Math., pages 99-135. Amer. Math. Soc., Providence, R.I., 1980. [PDF] Keyword(s): observability.
    Abstract:
    This paper proposes an approach to the problem of establishing the existence of observers for deterministic dynamical systems. This approach differs from the standard one based on Luenberger observers in that the observation error is not required to be Markovian given the past input and output data. A general abstract result is given, which special- izes to new results for parametrized families of linear systems, delay systems and other classes of systems. Related problems of feedback control and regulation are also studied.


Conference articles
  1. B.P. Ingalls, E.D. Sontag, and Y. Wang. Measurement to error stability: a notion of partial detectability for nonlinear systems. In Proc. IEEE Conf. Decision and Control, Las Vegas, Dec. 2002, IEEE Publications, pages 3946-3951, 2002. [PDF] Keyword(s): input to state stability.
    Abstract:
    For systems whose output is to be kept small (thought of as an error output), the notion of input to output stability (IOS) arises. Alternatively, when considering a system whose output is meant to provide information about the state (i.e. a measurement output), one arrives at the detectability notion of output to state stability (OSS). Combining these concepts, one may consider a system with two types of outputs, an error and a measurement. This leads naturally to a notion of partial detectability which we call measurement to error stability (MES). This property characterizes systems in which the error signal is detectable through the measurement signal. This paper provides a partial Lyapunov characterization of the MES property. A closely related property of stability in three measures (SIT) is introduced, which characterizes systems for which the error decays whenever it dominates the measurement. The SIT property is shown to imply MES, and the two are shown to be equivalent under an additional boundedness assumption. A nonsmooth Lyapunov characterization of the SIT property is provided, which yields the partial characterization of MES. The analysis is carried out on systems described by differential inclusions -- implicitly incorporating a disturbance input with compact value-set.


  2. M. Krichman, E.D. Sontag, and Y. Wang. Lyapunov characterizations of input-ouput-to-state stability. In Proc. IEEE Conf. Decision and Control, Phoenix, Dec. 1999, IEEE Publications, 1999, pages 2070-2075, 1999. Keyword(s): input to state stability, ISS, detectability.


  3. E.D. Sontag and Y. Wang. Detectability of nonlinear systems. In Proc. Conf. on Information Sciences and Systems (CISS 96), Princeton, NJ, pages 1031-1036, 1996. [PDF] Keyword(s): detectability, input to state stability, ISS.
    Abstract:
    Contains a proof of a technical step, which was omitted from the journal paper due to space constraints


  4. E.D. Sontag and H.J. Sussmann. Nonlinear output feedback design for linear systems with saturating controls. In Proc. IEEE Conf. Decision and Control, Honolulu, Dec. 1990, IEEE Publications, 1990, pages 3414-3416, 1990. [PDF] Keyword(s): saturation, bounded inputs.
    Abstract:
    This paper shows the existence of (nonlinear) smooth dynamic feedback stabilizers for linear time invariant systems under input constraints, assuming only that open-loop asymptotic controllability and detectability hold.


  5. E.D. Sontag. Some connections between stabilization and factorization. In Proceedings of the 28th IEEE Conference on Decision and Control, Vol. 1--3 (Tampa, FL, 1989), New York, pages 990-995, 1989. IEEE. [PDF]
    Abstract:
    Coprime right fraction representations are obtained for nonlinear systems defined by differential equations, under assumptions of stabilizability and detectability. A result is also given on left (not necessarily coprime) factorizations.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html