BACK TO INDEX

Publications about 'cyclic feedback systems'
Articles in journal or book chapters
  1. M. Arcak and E.D. Sontag. A passivity-based stability criterion for a class of interconnected systems and applications to biochemical reaction networks. Mathematical Biosciences and Engineering, 5:1-19, 2008. Note: Also, preprint: arxiv0705.3188v1 [q-bio], May 2007. [PDF] Keyword(s): MAPK cascades, systems biology, reaction networks, cyclic feedback systems, secant condition, nonlinear stability, dynamical systems.
    Abstract:
    This paper presents a stability test for a class of interconnected nonlinear systems motivated by biochemical reaction networks. One of the main results determines global asymptotic stability of the network from the diagonal stability of a "dissipativity matrix" which incorporates information about the passivity properties of the subsystems, the interconnection structure of the network, and the signs of the interconnection terms. This stability test encompasses the "secant criterion" for cyclic networks presented in our previous paper, and extends it to a general interconnection structure represented by a graph. A second main result allows one to accommodate state products. This extension makes the new stability criterion applicable to a broader class of models, even in the case of cyclic systems. The new stability test is illustrated on a mitogen activated protein kinase (MAPK) cascade model, and on a branched interconnection structure motivated by metabolic networks. Finally, another result addresses the robustness of stability in the presence of diffusion terms in a compartmental system made out of identical systems.


  2. M.R. Jovanovic, M. Arcak, and E.D. Sontag. A passivity-based approach to stability of spatially distributed systems with a cyclic interconnection structure. IEEE Transactions on Circuits and Systems, Special Issue on Systems Biology, 55:75-86, 2008. Note: Preprint: also arXiv math.OC/0701622, 22 January 2007.[PDF] Keyword(s): MAPK cascades, systems biology, reaction networks, nonlinear stability, nonlinear dynamics, diffusion, secant condition, cyclic feedback systems.
    Abstract:
    A class of distributed systems with a cyclic interconnection structure is considered. These systems arise in several biochemical applications and they can undergo diffusion driven instability which leads to a formation of spatially heterogeneous patterns. In this paper, a class of cyclic systems in which addition of diffusion does not have a destabilizing effect is identified. For these systems global stability results hold if the "secant" criterion is satisfied. In the linear case, it is shown that the secant condition is necessary and sufficient for the existence of a decoupled quadratic Lyapunov function, which extends a recent diagonal stability result to partial differential equations. For reaction-diffusion equations with nondecreasing coupling nonlinearities global asymptotic stability of the origin is established. All of the derived results remain true for both linear and nonlinear positive diffusion terms. Similar results are shown for compartmental systems.


  3. M. Arcak and E.D. Sontag. Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica, 42:1531-1537, 2006. [PDF] Keyword(s): passive systems, systems biology, reaction networks, cyclic feedback systems, secant condition, nonlinear stability, dynamical systems.
    Abstract:
    This paper considers a class of systems with a cyclic structure that arises, among other examples, in dynamic models for certain biochemical reactions. We first show that a criterion for local stability, derived earlier in the literature, is in fact a necessary and sufficient condition for diagonal stability of the corresponding class of matrices. We then revisit a recent generalization of this criterion to output strictly passive systems, and recover the same stability condition using our diagonal stability result as a tool for constructing a Lyapunov function. Using this procedure for Lyapunov construction we exhibit classes of cyclic systems with sector nonlinearities and characterize their global stability properties.


  4. E.D. Sontag. Passivity gains and the ``secant condition'' for stability. Systems Control Lett., 55(3):177-183, 2006. [PDF] Keyword(s): cyclic feedback systems, systems biology, reaction networks, nonlinear stability, dynamical systems, passive systems, secant condition, reaction networks.
    Abstract:
    A generalization of the classical secant condition for the stability of cascades of scalar linear systems is provided for passive systems. The key is the introduction of a quantity that combines gain and phase information for each system in the cascade. For linear one-dimensional systems, the known result is recovered exactly.


  5. E.D. Sontag. Asymptotic amplitudes and Cauchy gains: A small-gain principle and an application to inhibitory biological feedback. Systems Control Lett., 47(2):167-179, 2002. [PDF] Keyword(s): MAPK cascades, cyclic feedback systems, small-gain.
    Abstract:
    The notions of asymptotic amplitude for signals, and Cauchy gain for input/output systems, and an associated small-gain principle, are introduced. These concepts allow the consideration of systems with multiple, and possibly feedback-dependent, steady states. A Lyapunov-like characterization allows the computation of gains for state-space systems, and the formulation of sufficient conditions insuring the lack of oscillations and chaotic behaviors in a wide variety of cascades and feedback loops. An application in biology (MAPK signaling) is worked out in detail.


Conference articles
  1. M. Arcak and E.D. Sontag. A passivity-based stability criterion for a class of interconnected systems and applications to biochemical reaction networks. In Proc. IEEE Conf. Decision and Control, New Orleans, Dec. 2007, pages 4477-4482, 2007. Note: Conference version of journal paper with same title. Keyword(s): systems biology, reaction networks, cyclic feedback systems, secant condition, nonlinear stability, dynamical systems.


  2. M.R. Jovanovic, M. Arcak, and E.D. Sontag. Remarks on the stability of spatially distributed systems with a cyclic interconnection structure. In Proceedings American Control Conf., New York, July 2007, pages 2696-2701, 2007. Keyword(s): systems biology, reaction networks, cyclic feedback systems, spatially distributed systems, secant condition.
    Abstract:
    For distributed systems with a cyclic interconnection structure, a global stability result is shown to hold if the secant criterion is satisfied.


  3. M. Arcak and E.D. Sontag. Connections between diagonal stability and the secant condition for cyclic systems. In Proc. American Control Conference, Minneapolis, June 2006, pages 1493-1498, 2006. Keyword(s): systems biology, reaction networks, cyclic feedback systems, secant condition, nonlinear stability, dynamical systems.


  4. E.D. Sontag. Asymptotic amplitudes, Cauchy gains, an associated small-gain principle, and an application to inhibitory biological feedback. In Proc. IEEE Conf. Decision and Control, Las Vegas, Dec. 2002, IEEE Publications, pages 4318-4323, 2002. Keyword(s): cyclic feedback systems, small-gain.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html