BACK TO INDEX

Publications about 'critical points'
Articles in journal or book chapters
  1. A.C.B de Olivera, M. Siami, and E.D. Sontag. Convergence analysis of overparametrized LQR formulations. Automatica, 2024. Note: Submitted. Preprint in arXiv 2408.15456. [PDF] Keyword(s): learning theory, singularities in optimization, gradient systems, overparametrization, neural networks, overparametrization, gradient descent, input to state stability, feedback control, LQR.
    Abstract:
    Motivated by the growing use of Artificial Intelligence (AI) tools in control design, this paper takes the first steps towards bridging the gap between results from Direct Gradient methods for the Linear Quadratic Regulator (LQR), and neural networks. More specifically, it looks into the case where one wants to find a Linear Feed-Forward Neural Network (LFFNN) feedback that minimizes a LQR cost. This paper starts by computing the gradient formulas for the parameters of each layer, which are used to derive a key conservation law of the system. This conservation law is then leveraged to prove boundedness and global convergence of solutions to critical points, and invariance of the set of stabilizing networks under the training dynamics. This is followed by an analysis of the case where the LFFNN has a single hidden layer. For this case, the paper proves that the training converges not only to critical points but to the optimal feedback control law for all but a set of measure-zero of the initializations. These theoretical results are followed by an extensive analysis of a simple version of the problem (the ``vector case''), proving the theoretical properties of accelerated convergence and robustness for this simpler example. Finally, the paper presents numerical evidence of faster convergence of the training of general LFFNNs when compared to traditional direct gradient methods, showing that the acceleration of the solution is observable even when the gradient is not explicitly computed but estimated from evaluations of the cost function.


  2. E.D. Sontag. Critical points for least-squares problems involving certain analytic functions, with applications to sigmoidal nets. Adv. Comput. Math., 5(2-3):245-268, 1996. [PDF] Keyword(s): machine learning, subanalytic sets, semianalytic sets, critical points, approximation theory, neural networks, real-analytic functions.
    Abstract:
    This paper deals with nonlinear least-squares problems involving the fitting to data of parameterized analytic functions. For generic regression data, a general result establishes the countability, and under stronger assumptions finiteness, of the set of functions giving rise to critical points of the quadratic loss function. In the special case of what are usually called "single-hidden layer neural networks", which are built upon the standard sigmoidal activation tanh(x) or equivalently 1/(1+exp(-x)), a rough upper bound for this cardinality is provided as well.


Conference articles
  1. E.D. Sontag. Critical points for neural net least-squares problems. In Proc. 1995 IEEE Internat. Conf. Neural Networks, IEEE Publications, 1995, pages 2949-2954, 1995. Keyword(s): neural networks.


Internal reports
  1. E.D. Sontag. A remark about polynomials with specified local minima and no other critical points. Technical report, arxiv 1302.0759, 2013. [PDF]
    Abstract:
    The following observation must surely be "well-known", but it seems worth giving a simple and quite explicit proof. Take any finite subset X of Rn, n>1. Then, there is a polynomial function P:Rn -> R which has local minima on the set X, and has no other critical points. Applied to the negative gradient flow of P, this implies that there is a polynomial vector field with asymptotically stable equilibria on X and no other equilibria. Some trajectories of this vector field are not pre-compact; a complementary observation says that, again for arbitrary X, one can find a vector field with asymptotically stable equilibria on X, no other equilibria except saddles, and all omega-limit sets consisting of singletons.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html