BACK TO INDEX

Publications about 'chemical reaction networks'
Articles in journal or book chapters
  1. M.A. Al-Radhawi, D. Angeli, and E.D. Sontag. On structural contraction of biological interaction networks. 2024. Note: To be submitted. Preprint in: arXiv https://doi.org/10.48550/arXiv.2307.13678.Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms.
    Abstract:
    In previous work, we have developed an approach to understanding the long-term dynamics of classes of chemical reaction networks, based on rate-dependent Lyapunov functions. In this paper, we show that stronger notions of convergence can be established by proving contraction with respect to non-standard norms. This enables us to show that such networks entrain to periodic inputs. We illustrate our theory with examples from signaling pathways and genetic circuits.


  2. A. Duvall, M. Ali Al-Radhawi, Dhruv D. Jatkar, and E. D. Sontag. Interplay between contractivity and monotonicity for reaction networks. SIAM J Applied Dynamical Systems, 2024. Note: Submitted. Also preprint in arXiv.Keyword(s): monotone systems, chemical reaction networks, contractive systems.
    Abstract:
    This work studies relationships between monotonicity and contractivity, and applies the results to establish that many reaction networks are weakly contractive, and thus, under appropriate compactness conditions, globally convergent to equilibria. Verification of these properties is achieved through a novel algorithm that can be used to generate cones for an accompanying monotone system. The results given here allow a unified proof of global convergence for several classes of networks that had been previously studied in the literature.


  3. M.A. Al-Radhawi and E.D. Sontag. Analysis of a reduced model of epithelial-mesenchymal fate determination in cancer metastasis as a singularly-perturbed monotone system. In C.A. Beattie, P. Benner, M. Embree, S. Gugercin, and S. Lefteriu, editors, Realization and model reduction of dynamical systems. Springer Nature, 2022. Note: (Previous version: 2020 preprint in arXiv:1910.11311.). [PDF] Keyword(s): epithelial-mesenchymal transition, miRNA, singular perturbations, monotone systems, oncology, cancer, metastasis, chemical reaction networks, systems biology.
    Abstract:
    Metastasis can occur after malignant cells transition from the epithelial phenotype to the mesenchymal phenotype. This transformation allows cells to migrate via the circulatory system and subsequently settle in distant organs after undergoing the reverse transition. The core gene regulatory network controlling these transitions consists of a system made up of coupled SNAIL/miRNA-34 and ZEB1/miRNA-200 subsystems. In this work, we formulate a mathematical model and analyze its long-term behavior. We start by developing a detailed reaction network with 24 state variables. Assuming fast promoter and mRNA kinetics, we then show how to reduce our model to a monotone four-dimensional system. For the reduced system, monotone dynamical systems theory can be used to prove generic convergence to the set of equilibria for all bounded trajectories. The theory does not apply to the full model, which is not monotone, but we briefly discuss results for singularly-perturbed monotone systems that provide a tool to extend convergence results from reduced to full systems, under appropriate time separation assumptions.


  4. H. Hong, J. Kim, M.A. Al-Radhawi, E.D. Sontag, and J. K. Kim. Derivation of stationary distributions of biochemical reaction networks via structure transformation. Communications Biology, 4:620-, 2021. [PDF] Keyword(s): stationary distribution, chemical reaction networks, network translation, biochemical reaction networks, chemical master equation, stochastic, probabilistic, systems biology.
    Abstract:
    Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states in deterministic models and stationary distributions in stochastic models. Unlike deterministic steady states, stationary distributions capturing inherent fluctuations of reactions are extremely difficult to derive analytically due to the curse of dimensionality. Here, we develop a method to derive analytic stationary distributions from deterministic steady states by transforming BRNs to have a special dynamic property, called complex balancing. Specifically, we merge nodes and edges of BRNs to match in- and out-flows of each node. This allows us to derive the stationary distributions of a large class of BRNs, including autophosphorylation networks of EGFR, PAK1, and Aurora B kinase and a genetic toggle switch. This reveals the unique properties of their stochastic dynamics such as robustness, sensitivity, and multimodality. Importantly, we provide a user-friendly computational package, CASTANET, that automatically derives symbolic expressions of the stationary distributions of BRNs to understand their long-term stochasticity.


  5. M.A. Al-Radhawi, D. Angeli, and E.D. Sontag. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks. PLoS Computational Biology, pp 16(2): e1007681, 2020. [PDF] Keyword(s): MAPK cascades, Lyapunov functions, stability, chemical networks, chemical rection networks, systems biology, RFM, ribosome flow model.
    Abstract:
    This paper deals with the analysis of the dynamics of chemical reaction networks, developing a theoretical framework based only on graphical knowledge and applying regardless of the particular form of kinetics. This paper introduces a class of networks that are "structurally (mono) attractive", by which we mean that they are incapable of exhibiting multiple steady states, oscillation, or chaos by the virtue of their reaction graphs. These networks are characterized by the existence of a universal energy-like function which we call a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear systems is introduced, which form the extremals of a linear convex cone. The problem is then reduced to that of finding a common Lyapunov function for this set of extremals. Based on this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction Networks (LEARN), is provided that constructs such functions or rules out their existence. An extensive study of biochemical networks demonstrates that LEARN offers a new unified framework. We study basic motifs, three-body binding, and transcriptional networks. We focus on cellular signalling networks including various post-translational modification cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading, ERK signaling, and the Ribosome Flow Model.


  6. S. Wang, J.-R. Lin, E.D. Sontag, and P.K. Sorger. Inferring reaction network structure from single-cell, multiplex data, using toric systems theory. PLoS Computational Biology, 15:e1007311, 2019. [WWW] [PDF] Keyword(s): chemical reaction networks, stoichiometry, complex balancing, toric varieties, systems biology.
    Abstract:
    The goal of many single-cell studies on eukaryotic cells is to gain insight into the biochemical reactions that control cell fate and state. This paper introduces the concept of effective stoichiometric space (ESS) to guide the reconstruction of biochemical networks from multiplexed, fixed time-point, single-cell data. In contrast to methods based solely on statistical models of data, the ESS method leverages the power of the geometric theory of toric varieties to begin unraveling the structure of chemical reaction networks (CRN). This application of toric theory enables a data-driven mapping of covariance relationships in single cell measurements into stoichiometric information, one in which each cell subpopulation has its associated ESS interpreted in terms of CRN theory. In the development of ESS we reframe certain aspects of the theory of CRN to better match data analysis. As an application of our approach we process cytomery- and image-based single-cell datasets and identify differences in cells treated with kinase inhibitors. Our approach is directly applicable to data acquired using readily accessible experimental methods such as Fluorescence Activated Cell Sorting (FACS) and multiplex immunofluorescence.


  7. E.D. Sontag. Examples of computation of exact moment dynamics for chemical reaction networks. In R. Tempo, S. Yurkovich, and P. Misra, editors, Emerging Applications of Control and Systems Theory, volume 473 of Lecture Notes in Control and Inform. Sci., pages 295-312. Springer-Verlag, Berlin, 2018. [PDF] Keyword(s): chemical master equations, stochastic systems, moments, chemical reaction networks, incoherent feedforward loop, feedforward, IFFL, systems biology.
    Abstract:
    The study of stochastic biomolecular networks is a key part of systems biology, as such networks play a central role in engineered synthetic biology constructs as well as in naturally occurring cells. This expository paper reviews in a unified way a pair of recent approaches to the finite computation of statistics for chemical reaction networks.


  8. J. K. Kim and E.D. Sontag. Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation. PLoS Computational Biology, 13:13(6): e1005571, 2017. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, chemical master equation, chemical reaction networks, moments, molecular networks, complex-balanced networks.
    Abstract:
    Biochemical reaction networks in cells frequently consist of reactions with disparate timescales. Stochastic simulations of such multiscale BRNs are prohibitively slow due to the high computational cost incurred in the simulations of fast reactions. One way to resolve this problem is to replace fast species by their stationary conditional expectation values conditioned on slow species. While various approximations schemes for this quasi-steady state approximation have been developed, they often lead to considerable errors. This paper considers two classes of multiscale BRNs which can be reduced by through an exact QSS rather than approximations. Specifically, we assume that fast species constitute either a feedforward network or a complex balanced network. Exact reductions for various examples are derived, and the computational advantages of this approach are illustrated through simulations.


  9. E.D. Sontag and A. Singh. Exact moment dynamics for feedforward nonlinear chemical reaction networks. IEEE Life Sciences Letters, 1:26-29, 2015. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, chemical master equation, chemical reaction networks.
    Abstract:
    Chemical systems are inherently stochastic, as reactions depend on random (thermal) motion. This motivates the study of stochastic models, and specifically the Chemical Master Equation (CME), a discrete-space continuous-time Markov process that describes stochastic chemical kinetics. Exact studies using the CME are difficult, and several moment closure tools related to "mass fluctuation kinetics" and "fluctuation-dissipation" formulas can be used to obtain approximations of moments. This paper, in contrast, introduces a class of nonlinear chemical reaction networks for which exact computation is possible, by means of finite-dimensional linear differential equations. This class allows second and higher order reactions, but only under special assumptions on structure and/or conservation laws.


  10. E.D. Sontag. A technique for determining the signs of sensitivities of steady states in chemical reaction networks. IET Systems Biology, 8:251-267, 2014. Note: Code is here: https://github.com/sontaglab/CRNSeSi. [PDF] Keyword(s): sensitivity, retroactivity, biomolecular networks, systems biology, stoichiometry, biochemical networks, systems biology.
    Abstract:
    This paper studies the direction of change of steady states to parameter perturbations in chemical reaction networks, and, in particular, to changes in conserved quantities. Theoretical considerations lead to the formulation of a computational procedure that provides a set of possible signs of such sensitivities. The procedure is purely algebraic and combinatorial, only using information on stoichiometry, and is independent of the values of kinetic constants. Two examples of important intracellular signal transduction models are worked out as an illustration. In these examples, the set of signs found is minimal, but there is no general guarantee that the set found will always be minimal in other examples. The paper also briefly discusses the relationship of the sign problem to the question of uniqueness of steady states in stoichiometry classes.


  11. D. Angeli, P. de Leenheer, and E.D. Sontag. Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws. SIAM Journal on Applied Mathematics, 71:128-146, 2011. [PDF] Keyword(s): biochemical networks, fluxes, Petri nets, persistence, biochemical networks with inputs.
    Abstract:
    New checkable criteria for persistence of chemical reaction networks are proposed, which extend and complement existing ones. The new results allow the consideration of reaction rates which are time-varying, thus incorporating the effects of external signals, and also relax the assumption of existence of global conservation laws, thus allowing for inflows (production) and outflows (degradation). For time-invariant networks parameter-dependent conditions for persistence of certain classes of networks are provided. As an illustration, two networks arising in the systems biology literature are analyzed, namely a hypoxia and an apoptosis network.


  12. D. Angeli, P. de Leenheer, and E.D. Sontag. Graph-theoretic characterizations of monotonicity of chemical networks in reaction coordinates. J. Mathematical Biology, 61:581-616, 2010. [PDF] Keyword(s): MAPK cascades, biochemical networks, fluxes, monotone systems, reaction cordinates, Petri nets, persistence, futile cycles.
    Abstract:
    This paper derives new results for certain classes of chemical reaction networks, linking structural to dynamical properties. In particular, it investigates their monotonicity and convergence without making assumptions on the form of the kinetics (e.g., mass-action) of the dynamical equations involved, and relying only on stoichiometric constraints. The key idea is to find an alternative representation under which the resulting system is monotone. As a simple example, the paper shows that a phosphorylation/dephosphorylation process, which is involved in many signaling cascades, has a global stability property.


  13. D. Angeli, P. De Leenheer, and E.D. Sontag. A Petri net approach to persistence analysis in chemical reaction networks. In I. Queinnec, S. Tarbouriech, G. Garcia, and S-I. Niculescu, editors, Biology and Control Theory: Current Challenges (Lecture Notes in Control and Information Sciences Volume 357), pages 181-216. Springer-Verlag, Berlin, 2007. Note: See abstract for A Petri net approach to the study of persistence in chemical reaction networks.[PDF]


  14. D. Angeli, P. de Leenheer, and E.D. Sontag. A Petri net approach to the study of persistence in chemical reaction networks. Mathematical Biosciences, 210:598-618, 2007. Note: Please look at the paper ``A Petri net approach to persistence analysis in chemical reaction networks'' for additional results, not included in the journal paper due to lack of space. See also the preprint: arXiv q-bio.MN/068019v2, 10 Aug 2006. [PDF] Keyword(s): Petri nets, systems biology, biochemical networks, nonlinear stability, dynamical systems, futile cycles.
    Abstract:
    Persistency is the property, for differential equations in Rn, that solutions starting in the positive orthant do not approach the boundary. For chemical reactions and population models, this translates into the non-extinction property: provided that every species is present at the start of the reaction, no species will tend to be eliminated in the course of the reaction. This paper provides checkable conditions for persistence of chemical species in reaction networks, using concepts and tools from Petri net theory, and verifies these conditions on various systems which arise in the modeling of cell signaling pathways.


  15. P. de Leenheer, D. Angeli, and E.D. Sontag. Monotone chemical reaction networks. J. Math Chemistry, 41:295-314, 2007. [PDF] [doi:10.1007/s10910-006-9075-z] Keyword(s): systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    We analyze certain chemical reaction networks and show that every solution converges to some steady state. The reaction kinetics are assumed to be monotone but otherwise arbitrary. When diffusion effects are taken into account, the conclusions remain unchanged. The main tools used in our analysis come from the theory of monotone dynamical systems. We review some of the features of this theory and provide a self-contained proof of a particular attractivity result which is used in proving our main result.


  16. M. Chaves and E.D. Sontag. State-Estimators for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type. European J. Control, 8:343-359, 2002. [PDF] Keyword(s): observability, zero-deficiency networks, systems biology, biochemical networks, observers, nonlinear stability, dynamical systems.
    Abstract:
    This paper provides a necessary and sufficient condition for detectability, and an explicit construction of observers when this condition is satisfied, for chemical reaction networks of the Feinberg-Horn-Jackson zero deficiency type.


Conference articles
  1. D. Angeli, P. de Leenheer, and E.D. Sontag. On persistence of chemical reaction networks with time-dependent kinetics and no global conservation laws. In Proc. IEEE Conf. Decision and Control, Shanhai, Dec. 2009, pages 4559-4564, 2009. [PDF] Keyword(s): biochemical networks, fluxes, Petri nets, persistence, biochemical networks with inputs.
    Abstract:
    This is a very summarized version ofthe first part of the paper "Persistence results for chemical reaction networks with time-dependent kinetics and no global conservation laws".


  2. D. Angeli, P. de Leenheer, and E.D. Sontag. On the structural monotonicity of chemical reaction networks. In Proc. IEEE Conf. Decision and Control, San Diego, Dec. 2006, pages 7-12, 2006. IEEE. [PDF] Keyword(s): monotone systems, systems biology, biochemical networks, nonlinear stability, dynamical systems.
    Abstract:
    This paper derives new results for certain classes of chemical reaction networks, linking structural to dynamical properties. In particular, it investigates their monotonicity and convergence without making assumptions on the structure (e.g., mass-action kinetics) of the dynamical equations involved, and relying only on stoichiometric constraints. The key idea is to find a suitable set of coordinates under which the resulting system is cooperative. As a simple example, the paper shows that a phosphorylation/dephosphorylation process, which is involved in many signaling cascades, has a global stability property.


  3. D. Angeli, P. de Leenheer, and E.D. Sontag. A tutorial on monotone systems- with an application to chemical reaction networks. In Proc. 16th Int. Symp. Mathematical Theory of Networks and Systems (MTNS 2004), CD-ROM, WP9.1, Katholieke Universiteit Leuven, 2004. [PDF] Keyword(s): systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Monotone systems are dynamical systems for which the flow preserves a partial order. Some applications will be briefly reviewed in this paper. Much of the appeal of the class of monotone systems stems from the fact that roughly, most solutions converge to the set of equilibria. However, this usually requires a stronger monotonicity property which is not always satisfied or easy to check in applications. Following work of J.F. Jiang, we show that monotonicity is enough to conclude global attractivity if there is a unique equilibrium and if the state space satisfies a particular condition. The proof given here is self-contained and does not require the use of any of the results from the theory of monotone systems. We will illustrate it on a class of chemical reaction networks with monotone, but otherwise arbitrary, reaction kinetics.


  4. D. Angeli, P. de Leenheer, and E.D. Sontag. Remarks on monotonicity and convergence in chemical reaction networks. In Proc. IEEE Conf. Decision and Control, Paradise Island, Bahamas, Dec. 2004, IEEE Publications, pages 243-248, 2004. Keyword(s): systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.


  5. M. Chaves and E.D. Sontag. Observers for certain chemical reaction networks. In Proc. 2001 European Control Conf., Sep. 2001, pages 3715-3720, 2001. Keyword(s): zero-deficiency networks, systems biology, biochemical networks, nonlinear stability, dynamical systems, observability, observers.


Internal reports
  1. E.D. Sontag. Examples of computation of exact moment dynamics for chemical reaction networks. Technical report, arXiv:1612.02393, 2016. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, chemical master equation, chemical reaction networks, moments, molecular networks, complex-balanced networks.
    Abstract:
    We review in a unified way results for two types of stochastic chemical reaction systems for which moments can be effectively computed: feedforward networks and complex-balanced networks.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Wed Oct 30 12:09:15 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html