Abstract:
The development of genetic memory devices in synthetic biology is a challenging process that requires extensive analysis and characterization. In mammalian systems, this complexity is compounded by the need for a small DNA payload for efficient delivery into the cell. Previous genetic memory devices have relied exclusively on protein-based regulation, which are limited by their large size; in this paper, we propose a microRNA-based multistable network, which effectively halves the payload size for more efficient delivery. We demonstrate that the system can be multistable, and use formal methods to characterize constraints on design parameters that guarantee multistability. Our results provide a new genetic network topology that can achieve multistability and demonstrate the use of formal methods in the design of sophisticated genetic network architectures against non-convex top-level specifications. |