Publications about 'Biological systems' |
Articles in journal or book chapters |
Biological systems have been widely studied as complex dynamic systems that evolve with time in response to the internal resources abundance and external perturbations due to their common features. Integration of systems and synthetic biology provides a consolidated framework that draws system-level connections among biology, mathematics, engineering, and computer sciences. One major problem in current synthetic biology research is designing and controlling the synthetic circuits to perform reliable and robust behaviors as they utilize common transcription and translational resources among the circuits and host cells. While cellular resources are often limited, this results in a competition for resources by different genes and circuits, which affect the behaviors of synthetic genetic circuits. The manner competition impacts behavior depends on the “bottleneck” resource. With knowledge of physics laws and underlying mechanisms, the dynamical behaviors of the synthetic circuits can be described by the first principle models, usually represented by a system of ordinary differential equations (ODEs). In this work, we develop the novel embedded PINN (ePINN), which is composed of two nested loss-sharing neural networks to target and improve the unknown dynamics prediction from quantitative time series data. We apply the ePINN approach to identify the mathematical structures of competition phenotypes. Firstly, we use the PINNs approach to infer the model parameters and hidden dynamics from partially known data (including a lack of understanding of the reaction mechanisms or missing experimental data). Secondly, we test how well the algorithms can distinguish and extract the unknown dynamics from noisy data. Thirdly, we study how the synthetic and competing circuits behave in various cases when different particles become a limited resource. |
An important goal of synthetic biology is to build biosensors and circuits with well-defined input-output relationships that operate at speeds found in natural biological systems. However, for molecular computation, most commonly used genetic circuit elements typically involve several steps from input detection to output signal production: transcription, translation, and post-translational modifications. These multiple steps together require up to several hours to respond to a single stimulus, and this limits the overall speed and complexity of genetic circuits. To address this gap, molecular frameworks that rely exclusively on post-translational steps to realize reaction networks that can process inputs at a time scale of seconds to minutes have been proposed. Here, we build mathematical models of fast biosensors capable of producing Boolean logic functionality. We employ protease-based chemical and light-induced switches, investigate their operation, and provide selection guidelines for their use as on-off switches. As a proof of concept, we implement a rapamycin-induced switch in vitro and demonstrate that its response qualitatively agrees with the predictions from our models. We then use these switches as elementary blocks, developing models for biosensors that can perform OR and XOR Boolean logic computation while using reaction conditions as tuning parameters. We use sensitivity analysis to determine the time-dependent sensitivity of the output to proteolytic and protein-protein binding reaction parameters. These fast protease-based biosensors can be used to implement complex molecular circuits with a capability of processing multiple inputs controllably and algorithmically. Our framework for evaluating and optimizing circuit performance can be applied to other molecular logic circuits. |
Cells respond to biochemical and physical internal as well as external signals. These signals can be broadly classified into two categories: (a) ``actionable'' or ``reference'' inputs that should elicit appropriate biological or physical responses such as gene expression or motility, and (b) ``disturbances'' or ``perturbations'' that should be ignored or actively filtered-out. These disturbances might be exogenous, such as binding of nonspecific ligands, or endogenous, such as variations in enzyme concentrations or gene copy numbers. In this context, the term robustness describes the capability to produce appropriate responses to reference inputs while at the same time being insensitive to disturbances. These two objectives often conflict with each other and require delicate design trade-offs. Indeed, natural biological systems use complicated and still poorly understood control strategies in order to finely balance the goals of responsiveness and robustness. A better understanding of such natural strategies remains an important scientific goal in itself and will play a role in the construction of synthetic circuits for therapeutic and biosensing applications. A prototype problem in robustly responding to inputs is that of ``robust tracking'', defined by the requirement that some designated internal quantity (for example, the level of expression of a reporter protein) should faithfully follow an input signal while being insensitive to an appropriate class of perturbations. Control theory predicts that a certain type of motif, called integral feedback, will help achieve this goal, and this motif is, in fact, a necessary feature of any system that exhibits robust tracking. Indeed, integral feedback has always been a key component of electrical and mechanical control systems, at least since the 18th century when James Watt employed the centrifugal governor to regulate steam engines. Motivated by this knowledge, biological engineers have proposed various designs for biomolecular integral feedback control mechanisms. However, practical and quantitatively predictable implementations have proved challenging, in part due to the difficulty in obtaining accurate models of transcription, translation, and resource competition in living cells, and the stochasticity inherent in cellular reactions. These challenges prevent first-principles rational design and parameter optimization. In this work, we exploit the versatility of an Escherichia coli cell-free transcription-translation (TXTL) to accurately design, model and then build, a synthetic biomolecular integral controller that precisely controls the expression of a target gene. To our knowledge, this is the first design of a functioning gene network that achieves the goal of making gene expression track an externally imposed reference level, achieves this goal even in the presence of disturbances, and whose performance quantitatively agrees with mathematical predictions. |
Understanding how dynamical responses of biological networks are constrained by underlying network topology is one of the fundamental goals of systems biology. Here we employ monotone systems theory to formulate a theorem stating necessary conditions for non-monotonic time-response of a biochemical network to a monotonic stimulus. We apply this theorem to analyze the non-monotonic dynamics of the sigmaB-regulated glyoxylate shunt gene expression in Mycobacterium tuberculosis cells exposed to hypoxia. We first demonstrate that the known network structure is inconsistent with observed dynamics. To resolve this inconsistency we employ the formulated theorem, modeling simulations and optimization along with follow-up dynamic experimental measurements. We show a requirement for post-translational modulation of sigmaB activity in order to reconcile the network dynamics with its topology. The results of this analysis make testable experimental predictions and demonstrate wider applicability of the developed methodology to a wide class of biological systems. |
The phenomenon of fold-change detection, or scale invariance, is exhibited by a variety of sensory systems, in both bacterial and eukaryotic signaling pathways. It has been often remarked in the systems biology literature that certain systems whose output variables respond at a faster time scale than internal components give rise to an approximate scale-invariant behavior, allowing approximate fold-change detection in stimuli. This paper establishes a fundamental limitation of such a mechanism, showing that there is a minimal fold-change detection error that cannot be overcome, no matter how large the separation of time scales is. To illustrate this theoretically predicted limitation, we discuss two common biomolecular network motifs, an incoherent feedforward loop and a feedback system, as well as a published model of the chemotaxis signaling pathway of Dictyostelium discoideum. |
Often, the ultimate goal of regulation is to maintain a narrow range of concentration levels of vital quantities (homeostasis, adaptation) while at the same time appropriately reacting to changes in the environment (signal detection or sensitivity). Much theoretical, modeling, and analysis effort has been devoted to the understanding of these questions, traditionally in the context of steady-state responses to constant or step-changing stimuli. In this paper, we present a new theorem that provides a necessary and sufficient characterization of invariance of transient responses to symmetries in inputs. A particular example of this property, scale invariance (a.k.a. "fold change detection"), appears to be exhibited by biological sensory systems ranging from bacterial chemotaxis pathways to signal transduction mechanisms in eukaryotes. The new characterization amounts to the solvability of an associated partial differential equation. It is framed in terms of a notion which considerably extends equivariant actions of compact Lie groups. For several simple system motifs that are recurrent in biology, the solvability criterion may be checked explicitly. |
This note studies feedforward circuits as models for perfect adaptation to step signals in biological systems. A global convergence theorem is proved in a general framework, which includes examples from the literature as particular cases. A notable aspect of these circuits is that they do not adapt to pulse signals, because they display a memory phenomenon. Estimates are given of the magnitude of this effect. |
This paper provides an expository introduction to monotone and near-monotone biochemical network structures. Monotone systems respond in a predictable fashion to perturbations, and have very robust dynamical characteristics. This makes them reliable components of more complex networks, and suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone. In addition, interconnections of monotone systems may be fruitfully analyzed using tools from control theory. |
Multistability is an important recurring theme in cell signaling, of particular relevance to biological systems that switch between discrete states, generate oscillatory responses, or "remember" transitory stimuli. Standard mathematical methods allow the detection of bistability in some very simple feedback systems (systems with one or two proteins or genes that either activate each other or inhibit each other), but realistic depictions of signal transduction networks are invariably much more complex than this. Here we show that for a class of feedback systems of arbitrary order, the stability properties of the system can be deduced mathematically from how the system behaves when feedback is blocked. Provided that this "open loop," feedback-blocked system is monotone and possesses a sigmoidal characteristic, the system is guaranteed to be bistable for some range of feedback strengths. We present a simple graphical method for deducing the stability behavior and bifurcation diagrams for such systems, and illustrate the method with two examples taken from recent experimental studies of bistable systems: a two-variable Cdc2/Wee1 system and a more complicated five-variable MAPK cascade. |
Some biological systems operate at the critical point between stability and instability and this requires a fine-tuning of parameters. We bring together two examples from the literature that illustrate this: neural integration in the nervous system and hair cell oscillations in the auditory system. In both examples the question arises as to how the required fine-tuning may be achieved and maintained in a robust and reliable way. We study this question using tools from nonlinear and adaptive control theory. We illustrate our approach on a simple model which captures some of the essential features of neural integration. As a result, we propose a large class of feedback adaptation rules that may be responsible for the experimentally observed robustness of neural integration. We mention extensions of our approach to the case of hair cell oscillations in the ear. |
Conference articles |
This is a tutorial paper on control-theoretic methods for the analysis of biological systems. |
Applying Modular Response Analysis to a synthetic gene circuit, which was introduced in a recent paper by the authors, leads to the inference of a nontrivial "ghost" regulation edge which was not explicitly engineered into the network and which is, in fact, not immediately apparent from experimental measurements. One may thus hypothesize that this ghost regulatory effect is due to competition for resources. A mathematical model is proposed, and analyzed in closed form, that lends validation to this hypothesis. |
This conference paper (a) summarizes material from "A fundamental limitation to fold-change detection by biological systems with multiple time scales" (IET Systems Biology 2014) and presents additional remarks regarding (b) expansion techniques to compute FCD error and (c) stochastic adaptation and FCD |
This paper studies model-based estimation methods of a rate of a nonhomogeneous Poisson processes that describes events arising from modeling biological phenomena in which discrete events are measured. We describe an approach based on observers and Kalman filters as well as preliminary simulation results, and compare these to other methods (not model-based) in the literature. The problem is motivated by the question of identification of internal states from neural spikes and bacterial tumbling behavior. |
Recent experimental work has shown that transient E. coli chemotactic response is unchanged by a scaling of its ligand input signal (fold change detection, or FCD), and this is in agreement with earlier mathematical predictions. However, this prediction was based on certain particular assumptions on the structure of the chemotaxis pathway. In this work, we begin by showing that behavior similar to FCD can be obtained under weaker conditions on the system structure. Namely, we show that under relaxed conditions, a scaling of the chemotaxis system's inputs leads to a time scaling of the output response. We propose that this may be a contributing factor to the robustness of the experimentally observed FCD. We further show that FCD is a special case of this time scaling behavior for which the time scaling factor is unity. We then proceed to extend the conditions for output time scaling to more general adapting systems, and demonstrate this time scaling behavior on a published model of the chemotaxis pathway of the bacterium Rhodobacter sphaeroides. This work therefore provides examples of how robust biological behavior can arise from simple yet realistic conditions on the underlying system structure. |
This paper studies invariance with respect to symmetries in sensory fields, a particular case of which, scale invariance, has recently been found in certain eukaryotic as well as bacterial cell signaling systems. We describe a necessary and sufficient characterization of symmetry invariance in terms of equivariant transformations, show how this characterization helps find all possible symmetries in standard models of biological adaptation, and discuss symmetry-invariant searches. |
The proper function of many biological systems requires that external perturbations be detected, allowing the system to adapt to these environmental changes. It is now well established that this dual detection and adaptation requires that the system have an internal model in the feedback loop. In this paper we relax the requirement that the response of the system adapt perfectly, but instead allow regulation to within a neighborhood of zero. We show, in a nonlinear setting, that systems with the ability to detect input signals and approximately adapt require an approximate model of the input. We illustrate our results by analyzing a well-studied biological system. These results generalize previous work which treats the perfectly adapting case. |
Internal reports |
For a general class of translationally invariant systems with a specific category of nonlinearity in the output, this paper presents necessary and sufficient conditions for global observability. Critically, this class of systems cannot be stabilized to an isolated equilibrium point by dynamic output feedback. These analyses may help explain the active sensing movements made by animals when they perform certain motor behaviors, despite the fact that these active sensing movements appear to run counter to the primary motor goals. The findings presented here establish that active sensing underlies the maintenance of observability for such biological systems, which are inherently nonlinear due to the presence of the high-pass sensor dynamics. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibTEX by bibtex2html