Publications about 'approximation theory' |
Articles in journal or book chapters |
This paper deals with sparse approximations by means of convex combinations of elements from a predetermined "basis" subset S of a function space. Specifically, the focus is on the rate at which the lowest achievable error can be reduced as larger subsets of S are allowed when constructing an approximant. The new results extend those given for Hilbert spaces by Jones and Barron, including in particular a computationally attractive incremental approximation scheme. Bounds are derived for broad classes of Banach spaces. The techniques used borrow from results regarding moduli of smoothness in functional analysis as well as from the theory of stochastic processes on function spaces. |
This paper deals with nonlinear least-squares problems involving the fitting to data of parameterized analytic functions. For generic regression data, a general result establishes the countability, and under stronger assumptions finiteness, of the set of functions giving rise to critical points of the quadratic loss function. In the special case of what are usually called "single-hidden layer neural networks", which are built upon the standard sigmoidal activation tanh(x) or equivalently 1/(1+exp(-x)), a rough upper bound for this cardinality is provided as well. |
Conference articles |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibTEX by bibtex2html