BACK TO INDEX

Publications of Eduardo D. Sontag jointly with J.T. White
Articles in journal or book chapters
  1. T. Kang, J.T. White, Z. Xie, Y. Benenson, E.D. Sontag, and L. Bleris. Reverse engineering validation using a benchmark synthetic gene circuit in human cells. ACS Synthetic Biology, 2:255-262, 2013. [PDF] Keyword(s): reverse engineering, systems biology, synthetic biology.
    Abstract:
    This work introduces an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.


  2. V. Shimoga, J.T. White, Y. Li, E.D. Sontag, and L. Bleris. Synthetic mammalian transgene negative autoregulation. Molecular Systems Biology, 9:670-, 2013. [PDF] Keyword(s): systems biology, synthetic biology, gene expression.
    Abstract:
    Using synthetic circuits stably integrated in human kidney cells, we study the effect of negative feedback regulation on cell-wide (extrinsic) and gene-specific (intrinsic) sources of uncertainty. We develop a theoretical approach to extract the two noise components from experiments and show that negative feedback reduces extrinsic noise while marginally increasing intrinsic noise, resulting to significant total noise reduction. We compare the results to simple negative regulation, where a constitutively transcribed transcription factor represses a reporter protein. We observe that the control architecture also reduces the extrinsic noise but results in substantially higher intrinsic fluctuations. We conclude that negative feedback is the most efficient way to mitigate the effects of extrinsic fluctuations by a sole regulatory wiring.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html