BACK TO INDEX

Publications of Eduardo D. Sontag jointly with L. Wang
Articles in journal or book chapters
  1. L. Wang, P. de Leenheer, and E.D. Sontag. Conditions for global stability of monotone tridiagonal systems with negative feedback. Systems and Control Letters, 59:138-130, 2010. [PDF] Keyword(s): systems biology, monotone systems, tridiagonal systems, global stability.
    Abstract:
    This paper studies monotone tridiagonal systems with negative feedback. These systems possess the Poincar{\'e}-Bendixson property, which implies that, if orbits are bounded, if there is a unique steady state and this unique equilibrium is asymptotically stable, and if one can rule out periodic orbits, then the steady state is globally asymptotically stable. Different approaches are discussed to rule out period orbits. One is based on direct linearization, while the other uses the theory of second additive compound matrices. Among the examples that will illustrate our main theoretical results is the classical Goldbeter model of circadian rhythms.


  2. L. Wang and E.D. Sontag. On the number of steady states in a multiple futile cycle. Journal of Mathematical Biology, 57:29-52, 2008. [PDF] Keyword(s): singular perturbations, futile cycles, MAPK cascades, systems biology, reaction networks, multistability.
    Abstract:
    This note studies the number of positive steady states in biomolecular reactions consisting of activation/deactivation futile cycles, such as those arising from phosphorylations and dephosphorylations at each level of a MAPK cascade. It is shown that: (1) for some parameter ranges, there are at least n+1 (if n is even) or n (if n is odd) steady states; (2) there never are more than 2n-1 steady states (so, for n=2, there are no more than 3 steady states); (3) for parameters near the standard Michaelis-Menten quasi-steady state conditions, there are at most n+1 steady states; and (4) for parameters far from the standard Michaelis-Menten quasi-steady state conditions, there is at most one steady state.


  3. L. Wang and E.D. Sontag. Singularly perturbed monotone systems and an application to double phosphorylation cycles. J. Nonlinear Science, 18:527-550, 2008. [PDF] Keyword(s): singular perturbations, futile cycles, MAPK cascades, systems biology, reaction networks, nonlinear stability, nonlinear dynamics, multistability, monotone systems.
    Abstract:
    The theory of monotone dynamical systems has been found very useful in the modeling of some gene, protein, and signaling networks. In monotone systems, every net feedback loop is positive. On the other hand, negative feedback loops are important features of many systems, since they are required for adaptation and precision. This paper shows that, provided that these negative loops act at a comparatively fast time scale, the main dynamical property of (strongly) monotone systems, convergence to steady states, is still valid. An application is worked out to a double-phosphorylation "futile cycle" motif which plays a central role in eukaryotic cell signaling The workis heavily based on Fenichel-Jones geometric singular perturbation theory.


Conference articles
  1. L. Wang, P. de Leenheer, and E.D. Sontag. Global stability for monotone tridiagonal systems with negative feedback. In Proc. IEEE Conf. Decision and Control, Cancun, Dec. 2008, pages 4091-4096, 2008. Keyword(s): systems biology, monotone systems, tridiagonal systems, global stability.
    Abstract:
    Conference version of paper "Conditions for global stability of monotone tridiagonal systems with negative feedback"


  2. L. Wang and E.D. Sontag. Further results on singularly perturbed monotone systems, with an application to double phosphorylation cycles. In Proc. IEEE Conf. Decision and Control, New Orleans, Dec. 2007, pages 627-632, 2007. Note: Conference version of Singularly perturbed monotone systems and an application to double phosphorylation cycles.Keyword(s): singular perturbations, futile cycles, MAPK cascades, systems biology, reaction networks, nonlinear stability, nonlinear dynamics, multistability, monotone systems.


  3. L. Wang and E.D. Sontag. A remark on singular perturbations of strongly monotone systems. In Proc. IEEE Conf. Decision and Control, San Diego, Dec. 2006, pages 989-994, 2006. IEEE. [PDF] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, singular perturbations, monotone systems.
    Abstract:
    This paper deals with global convergence to equilibria, and in particular Hirsch's generic convergence theorem for strongly monotone systems, for singular perturbations of monotone systems.


  4. L. Wang and E.D. Sontag. Almost global convergence in singular perturbations of strongly monotone systems. In C. Commault and N. Marchand, editors, Positive Systems, pages 415-422, 2006. Springer-Verlag, Berlin/Heidelberg. Note: (Lecture Notes in Control and Information Sciences Volume 341, Proceedings of the second Multidisciplinary International Symposium on Positive Systems: Theory and Applications (POSTA 06) Grenoble, France). [PDF] [doi:10.1007/3-540-34774-7] Keyword(s): systems biology, reaction networks, nonlinear stability, dynamical systems, singular perturbations, monotone systems.
    Abstract:
    This paper deals with global convergence to equilibria, and in particular Hirsch's generic convergence theorem for strongly monotone systems, for singular perturbations of monotone systems.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html