Abstract:
Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. We have developed design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated using a 2-bit version of the MD5 hashing algorithm, an early predecessor to the cryptographic functions underlying cryptocurrency. One iteration requires 110 logic gates, which were partitioned across 66 strains of Escherichia coli, requiring the introduction of a total of 1.1 Mb of recombinant DNA into their genomes. The strains are individually experimentally verified to integrate their assigned input signals, process this information correctly, and propagate the result to the cell in the next layer. This work demonstrates the potential to obtain programmable control of multicellular biological processes. |