BACK TO INDEX

Publications of Eduardo D. Sontag jointly with M. D. Kvalheim
Articles in journal or book chapters
  1. M. D. Kvalheim and E. D. Sontag. Why should autoencoders work?. Transactions on Machine Learning Research, 2024. Note: See also 2023 preprint in https://arxiv.org/abs/2310.02250.[WWW] [PDF] Keyword(s): autoencoders, neural networks, differential topology, model reduction.
    Abstract:
    Deep neural network autoencoders are routinely used computationally for model reduction. They allow recognizing the intrinsic dimension of data that lie in a k-dimensional subset K of an input Euclidean space $\R^n$. The underlying idea is to obtain both an encoding layer that maps $\R^n$ into $\R^k$ (called the bottleneck layer or the space of latent variables) and a decoding layer that maps $\R^k$ back into $\R^n$, in such a way that the input data from the set K is recovered when composing the two maps. This is achieved by adjusting parameters (weights) in the network to minimize the discrepancy between the input and the reconstructed output. Since neural networks (with continuous activation functions) compute continuous maps, the existence of a network that achieves perfect reconstruction would imply that K is homeomorphic to a k-dimensional subset of $\R^k$, so clearly there are topological obstructions to finding such a network. On the other hand, in practice the technique is found to "work" well, which leads one to ask if there is a way to explain this effectiveness. We show that, up to small errors, indeed the method is guaranteed to work. This is done by appealing to certain facts from differential geometry. A computational example is also included to illustrate the ideas.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html