Abstract:
This paper provides lower and upper bounds for the VC dimension of recurrent networks. Several types of activation functions are discussed, including threshold, polynomial, piecewise-polynomial and sigmoidal functions. The bounds depend on two independent parameters: the number w of weights in the network, and the length k of the input sequence. Ignoring multiplicative constants, the main results say roughly the following: 1. For architectures whose activation is any fixed nonlinear polynomial, the VC dimension is proportional to wk. 2. For architectures whose activation is any fixed piecewise polynomial, the VC dimension is between wk and w**2k. 3. For architectures with threshold activations, the VC dimension is between wlog(k/w) and the smallest of wklog(wk) and w**2+wlog(wk). 4. For the standard sigmoid tanh(x), the VC dimension is between wk and w**4 k**2. |