BACK TO INDEX

Publications of Eduardo D. Sontag jointly with R. Dondi
Articles in journal or book chapters
  1. R. Albert, B. Dasgupta, R. Dondi, and E.D. Sontag. Inferring (biological) signal transduction networks via transitive reductions of directed graphs. Algorithmica, 51:129-159, 2008. [PDF] [doi:10.1007/s00453-007-9055-0] Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.
    Abstract:
    The transitive reduction problem is that of inferring a sparsest possible biological signal transduction network consistent with a set of experimental observations, with a goal to minimize false positive inferences even if risking false negatives. This paper provides computational complexity results as well as approximation algorithms with guaranteed performance.


  2. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E.D. Sontag, A. Zelikovsky, and K. Westbrooks. A novel method for signal transduction network inference from indirect experimental evidence. In R. Giancarlo and S. Hannenhalli, editors, 7th Workshop on Algorithms in Bioinformatics (WABI), volume 14, pages 407-419. Springer-Verlag, Berlin, 2007. Note: Conference version of journal paper with same title. Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.


  3. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E.D. Sontag, A. Zelikovsky, and K. Westbrooks. A novel method for signal transduction network inference from indirect experimental evidence. Journal of Computational Biology, 14:927-949, 2007. [PDF] Keyword(s): systems biology, reaction networks, algorithms, signal transduction networks, graph algorithms.
    Abstract:
    This paper introduces a new method of combined synthesis and inference of biological signal transduction networks. The main idea lies in representing observed causal relationships as network paths, and using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. The paper formalizes the approach, studies its computational complexity, proves new results for exact and approximate solutions of the computationally hard transitive reduction substep of the approach, validates the biological applicability by applying it to a previously published signal transduction network by Li et al., and shows that the algorithm for the transitive reduction substep performs well on graphs with a structure similar to those observed in transcriptional regulatory and signal transduction networks.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Nov 15 15:28:35 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html