Publications of Eduardo D. Sontag jointly with B. DasGupta |
Articles in journal or book chapters |
In this paper, we introduce a topological redundancy measure for labeled directed networks that is formal, computationally efficient and applicable to a variety of directed networks such as cellular signaling, metabolic and social interaction networks. We demonstrate the computational efficiency of our measure by computing its value and statistical significance on a number of biological and social networks with up to several thousands of nodes and edges. Our results suggest a number of interesting observations: (1) social networks are more redundant that their biological counterparts, (2) transcriptional networks are less redundant than signaling networks, (3) the topological redundancy of the C. elegans metabolic network is largely due to its inclusion of currency metabolites, and (4) the redundancy of signaling networks is highly (negatively) correlated with monotonicity of their dynamics. |
We present a novel computational method, and related software, to synthesize signal transduction networks from single and double causal evidence. |
The transitive reduction problem is that of inferring a sparsest possible biological signal transduction network consistent with a set of experimental observations, with a goal to minimize false positive inferences even if risking false negatives. This paper provides computational complexity results as well as approximation algorithms with guaranteed performance. |
This paper presents a software tool for inference and simplification of signal transduction networks. The method relies on the representation of observed indirect causal relationships as network paths, using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. We illustrate the biological usability of our software by applying it to a previously published signal transduction network and by using it to synthesize and simplify a novel network corresponding to activation-induced cell death in large granular lymphocyte leukemia. |
This paper introduces a new method of combined synthesis and inference of biological signal transduction networks. The main idea lies in representing observed causal relationships as network paths, and using techniques from combinatorial optimization to find the sparsest graph consistent with all experimental observations. The paper formalizes the approach, studies its computational complexity, proves new results for exact and approximate solutions of the computationally hard transitive reduction substep of the approach, validates the biological applicability by applying it to a previously published signal transduction network by Li et al., and shows that the algorithm for the transitive reduction substep performs well on graphs with a structure similar to those observed in transcriptional regulatory and signal transduction networks. |
This paper studies a computational problem motivated by the modular response analysis method for reverse engineering of protein and gene networks. This set-cover problem is hard to solve exactly for large networks, but efficient approximation algorithms are given and their complexity is analyzed. |
This paper investigates computational complexity aspects of a combinatorial problem that arises in the reverse engineering of protein and gene networks, showing relations to an appropriate set multicover problem with large "coverage" factor, and providing a non-trivial analysis of a simple randomized polynomial-time approximation algorithm for the problem. |
A useful approach to the mathematical analysis of large-scale biological networks is based upon their decompositions into monotone dynamical systems. This paper deals with two computational problems associated to finding decompositions which are optimal in an appropriate sense. In graph-theoretic language, the problems can be recast in terms of maximal sign-consistent subgraphs. The theoretical results include polynomial-time approximation algorithms as well as constant-ratio inapproximability results. One of the algorithms, which has a worst-case guarantee of 87.9% from optimality, is based on the semidefinite programming relaxation approach of Goemans-Williamson. The algorithm was implemented and tested on a Drosophila segmentation network and an Epidermal Growth Factor Receptor pathway model. |
This paper investigates the problem of searching for a hidden target in a bounded region of the plane by an autonomous robot which is only able to use limited local sensory information. It proposes an aggregation-based approach to solve this problem, in which the continuous search space is partitioned into a finite collection of regions on which we define a discrete search problem and a solution to the original problem is obtained through a refinement procedure that lifts the discrete path into a continuous one. The resulting solution is in general not optimal but one can construct bounds to gauge the cost penalty incurred. The discrete version is formalized and an optimization problem is stated as a `reward-collecting' bounded-length path problem. NP-completeness and efficient approximation algorithms for various cases of this problem are discussed. |
The area of hybrid systems concerns issues of modeling, computation, and control for systems which combine discrete and continuous components. The subclass of piecewise linear (PL) systems provides one systematic approach to discrete-time hybrid systems, naturally blending switching mechanisms with classical linear components. PL systems model arbitrary interconnections of finite automata and linear systems. Tools from automata theory, logic, and related areas of computer science and finite mathematics are used in the study of PL systems, in conjunction with linear algebra techniques, all in the context of a "PL algebra" formalism. PL systems are of interest as controllers as well as identification models. Basic questions for any class of systems are those of equivalence, and, in particular, if state spaces are equivalent under a change of variables. This paper studies this state-space equivalence problem for PL systems. The problem was known to be decidable, but its computational complexity was potentially exponential; here it is shown to be solvable in polynomial-time. |
Recurrent perceptron classifiers generalize the usual perceptron model. They correspond to linear transformations of input vectors obtained by means of "autoregressive moving-average schemes", or infinite impulse response filters, and allow taking into account those correlations and dependences among input coordinates which arise from linear digital filtering. This paper provides tight bounds on sample complexity associated to the fitting of such models to experimental data. The results are expressed in the context of the theory of probably approximately correct (PAC) learning. |
Blum and Rivest showed that any possible neural net learning algorithm based on fixed architectures faces severe computational barriers. This paper extends their NP-completeness result, which applied only to nets based on hard threshold activations, to nets that employ a particular continuous activation. In view of neural network practice, this is a more relevant result to understanding the limitations of backpropagation and related techniques. |
Conference articles |
We investigate the problem of searching for a hidden target in a bounded region by an autonomous agent that is only able to use limited local sensory information. We propose an aggregation-based approach to solve this problem, in which the continuous search space is partitioned into a finite collection of regions on which we define a discrete search problem. A solution to the original problem is then obtained through a refinement procedure that lifts the discrete path into a continuous one. The resulting solution is in general not optimal but one can construct bounds to gauge the cost penalty incurred. |
In this paper we investigate the problem of searching for a hidden target in a bounded region of the plane, by an autonomous robot which is only able to use limited local sensory information. We formalize a discrete version of the problem as a "reward-collecting" path problem and provide efficient approximation algorithms for various cases. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibTEX by bibtex2html