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A B S T R A C T

This paper studies the effect of perturbations on the gradient flow of a general nonlinear programming
problem, where the perturbation may arise from inaccurate gradient estimation in the setting of data-driven
optimization. Under suitable conditions on the objective function, the perturbed gradient flow is shown to be
small-disturbance input-to-state stable (ISS), which implies that, in the presence of a small-enough perturbation,
the trajectories of the perturbed gradient flow must eventually enter a small neighborhood of the optimum.
This work was motivated by the question of robustness of direct methods for the linear quadratic regulator
problem, and specifically the analysis of the effect of perturbations caused by gradient estimation or round-off
errors in policy optimization. We show small-disturbance ISS for three of the most common optimization
algorithms: standard gradient flow, natural gradient flow, and Newton gradient flow.
1. Introduction

Gradient-based optimization of loss functions constitutes a key tool
in contemporary machine learning. Thus, the theoretical analysis of
convergence to the minima of loss functions, in gradient-like iterations
and/or in their continuous analogue, gradient-like flows (viewed as
the limit of discrete-time gradient descent algorithms with infinitesi-
mally small step size) have attracted considerable attention from both
academic and industrial researchers. Besides convergence under ideal
no-noise situations, a useful optimization algorithm should be capable
of finding a near-optimal solution while degrading elegantly in the
face of perturbations that might arise from noisy measurements of
experimental data, arithmetic rounding errors due to numerical com-
putation, numerically approximating the gradient from data through
two-point estimates, discretization error when solving ordinary dif-
ferential equations, or even early stopping when estimating gradients
in a hierarchical learning setup [1–5]. Especially in the setting of
data-driven optimization, the analytical form of the gradient is typi-
cally unknown, and consequently the gradient has to be numerically
approximated through sampling and experiments, which unavoidably
introduces perturbations to the gradient iteration or flow. In computer
science foundations of optimization theory, similarly, noisy or error-
prone operations such as inexact or stochastic gradient computations
have led to the introduction of the concept of ‘‘reproducibility in op-
timization’’ which is concerned conceptually with the same issues [6].
One could also view adversarial attacks on neural network training as
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affecting gradient computations in ‘‘backpropagation’’ algorithms, and
the effect of disturbances in that context has been the subject of recent
work [7]. In summary, both the convergence and robustness properties
of gradient descent should be theoretically analyzed in the presence
of perturbations. Mathematically, gradient flows are more amenable
to mathematical analysis than discrete iterations, so they are the main
object of study in this paper.

In order to formulate precisely the effect of perturbations on gra-
dient flows, we employ as in [5] the formalism of input-to-state sta-
bility (ISS) introduced originally in [8] (see for example [9] for an
exposition).

The key to proving ISS for perturbed gradient flows is to verify a
Polyak-Łojasiewicz (PL) type of condition [10–12] on the loss function
to be optimized, meaning that the gradient of the loss function should
not be ‘‘too small’’ compared to the loss. Roughly (precise definitions
to be given) if we wish to minimize a continuously differentiable (but
not necessarily convex) function  (𝑧) on a domain  and if a global
minimizer 𝑧∗ exists, then we would like that, for some continuous
function 𝜅 ∶ R≥0 → R≥0 which satisfies that 𝜅(0) = 0 and 𝜅(𝑟) > 0
for all 𝑟 > 0 (a ‘‘positive definite’’ function), there should hold an
estimate of the form ‖∇ (𝑧)‖ ≥ 𝜅( (𝑧)− (𝑧∗)) valid for all 𝑧 in . The
classical PL condition is often stated in a slightly different ‘‘semi-global’’
form, by requiring the existence, for each 𝑟, of a constant 𝑐𝑟 such that
‖∇ (𝑧)‖ ≥ 𝑐𝑟( (𝑧)− (𝑧∗)) for every 𝑧 in the sublevel set {𝑧 ∣  (𝑧) ≤ 𝑟}.
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For a coercive function  , this is equivalent to the above estimate using
ositive definite functions.

Sometimes, the PL condition is stated globally, that is, with a
onstant 𝑐 which is independent of 𝑟 (in other words, 𝜅 can be picked

as a linear function), but such a global condition is too strong for many
applications, including the one to be pursued here. On the other hand,
one could think of stronger forms of the PL condition, weaker than
the existence of a linear function but stronger than merely requiring
𝜅 to be positive definite. One particularly useful strengthening is to ask
that 𝜅 be a function of class , that is, that it be a strictly increasing
function. For example, one could take 𝜅(𝑟) = 𝑎𝑟

𝑏+𝑟 : note that this function
saturates, in the sense that it approaches a finite limit as 𝑟 → +∞. This
is stronger than asking that 𝜅 be only positive definite, as illustrated
by 𝜅(𝑟) = 𝑎𝑟

(𝑏+𝑟)2 which is positive definite but is not of class . An
even further strengthening would be to ask that 𝜅 be of class ∞,
meaning that 𝜅 does not saturate, 𝜅(𝑟) → ∞ as 𝑟 → ∞, as for example
when 𝜅 is linear. Estimates with 𝜅 of class ∞ lead to ISS estimates
for perturbed gradient flows, as discussed in [5], and a similar proof to
that in [5] can be used to show that estimates with 𝜅(𝑟) only positive
definite lead to the weaker property of ‘‘integral ISS (iISS)’’ [13,14]
for perturbed gradient flows. We may call the intermediate type of
PL estimate, in which 𝜅 is required to be of class  (a stronger
property than positive definiteness, but not as strong as class ∞) a
CJS-PL (‘‘comparison just saturated’’) estimate. It turns out that CJS-PL
estimates are exactly what is required in order to establish ‘‘small-
disturbance’’ ISS as studied in [15,16]. To be precise, we will show
that when the objective function is coercive (the value of the objective
function blows up when the decision variable approaches the boundary
of ) and the CJS-PL condition holds, the perturbed gradient flow is
small-disturbance ISS. This implies that the trajectories of the perturbed
gradient flow will eventually enter a small neighborhood of the optimal
solution, as long as the perturbation is sufficiently small. In addition,
the size of the neighborhood is (in a nonlinear manner) proportional to
the magnitude of the perturbation. In the application that motivated
this work, the linear regulator problem (see below), CJS-PL is the
correct notion to use, and we believe that this notion might be of more
general applicability in optimization problems as well.

We should remark that generalizations of the PL condition, and rela-
tions to ISS types of properties, can be found in other recent work. This
includes [17], which studies the gradient minimization of a function
𝑞 on Euclidean space, where the parameter 𝑞 represents time-varying
uncertainty. In that paper, an ISS property is established with respect to
the rate of change of the parameter 𝑞, essentially showing differential
ISS (DISS) [18]). Extremum-seeking controllers based on gradient flows
and an ISS property with respect to disturbances, specifically for an
integrator and a kinematic unicycle, are designed and analyzed in [2];
in that paper the domain is a closed submanifold of an Euclidean space.
In [1] one finds results on gradient flows that are ISS with respect to
additive errors, but assuming a ‘‘convex-concave’’ property for the loss
function, and in [3] the authors solve an output regulation problem for
switched linear systems, and show an ISS property for gradient flows
with respect to unknown disturbances acting on the plant.

We now turn to the main motivation for this work. Reinforcement
learning (RL) is an active research field in which gradient-based op-
timization plays a pivotal role [19, Chapter 13]. In the setting of
RL, an agent interacts continuously with an unknown environment,
and iteratively optimizes a performance index by collecting data from
the environment. By adopting gradient-based optimization methods,
various policy optimization (PO) algorithms have been developed, such
as actor-critic methods [20], deep deterministic policy gradient [21],
and trust region policy optimization [22]. The critical strategy of the
policy optimization methods is to parameterize the policy by universal
approximations and update the parameters of the policy along the
gradient descent direction of the performance index.

Starting in the early 1960s with the work of Kalman, the lin-
2

ear quadratic regulator (LQR) problem was shown to be theoretically I
tractable, and has become a widely utilized tool for optimal control and
feedback design in engineering applications.

In the classical approach, the (infinite-horizon) LQR problem re-
lies upon the solution of a Riccati equation. In 1970, Athans and
Levine [23] introduced the idea of a direct gradient descent compu-
tation of optimal feedback gains, a procedure which can be interpreted
as a form of RL. Thus, the LQR problem offers an ideal benchmark for
better understanding policy optimization methods in the RL field, as
one can compare solutions to the known optimal solution, and analysis
of gradient methods can take advantage of theory developed for LQR.
For policy optimization in the LQR problem, the objective function is
a cumulative quadratic function of the state and control inputs, the
control policy is parameterized as a linear function (feedback) of the
state, and the admissible set, consisting of all the stabilizing control
gains, is an open subset of an Euclidean space. As investigated for
example in [4,24,25], the gradient of the objective function can be
computed by using a Lyapunov equation that depends on the system
matrices. Nevertheless, if precise system knowledge is unavailable, as
in the setting of model-free RL, the gradient has to be numerically
approximated through sampling and experiments. For example, by
utilizing the approximate dynamic programming technique [26,27],
the Lyapunov equation was solved by data-driven methods in [28–30].
In [4,31,32], the gradient is directly calculated by the finite differences
method [33, Section 7.1], based on the change in function values in
response to small perturbations near a given point. For these data-
driven methods, a gradient estimation error is inevitable due to noisy
data and insufficient samples. Therefore, the robustness analysis of the
policy optimization algorithm in the presence of perturbations is critical
for efficient learning, and lays the foundations for better understanding
RL algorithms.

Our main result will be that, for the LQR problem, the loss function
is coercive and satisfies the CJS-PL property, and therefore, by the
results in the first part of the paper, we conclude that the perturbed
standard gradient flow is small-disturbance ISS. We also show that two
variants of gradient flows, natural gradient flows and Newton gradient
flows, are small-disturbance ISS. The new contribution is to establish
the CJS-PL property for the LQR problem. This considerably extends
previous work [4,24] that only showed a semiglobal estimate (and thus
would imply merely iISS). In [5], it was mistakenly stated that the
magnitude of the gradient is lower bounded by a ∞-function, which is
a stronger property. This is incorrect. Indeed, take a one-dimensional
linear system with scalar inputs and assume that all constants in the
system and cost function are equal to one. Then the loss function is
 (𝑧) = 𝑧2+1

2(𝑧−1) , so that its gradient is  ′(𝑧) = 𝑧2−2𝑧−1
2(𝑧−1)2 . The domain of 

is the open set (1,∞). We claim that there is no function 𝜅 of class ∞
such that |

|

 ′(𝑧)|
|

≥ 𝜅( (𝑧)− (𝑧∗)), where 𝑧∗ is the global minimizer of
. Indeed, as 𝑧 → ∞ we would have that  (𝑧) → ∞, so, as 𝜅 is of class
∞, also 𝜅( (𝑧) −  (𝑧∗)) → ∞. However, the left-hand side |

|

 ′(𝑧)|
|

is
ounded, and in fact converges to 1∕2, showing a contradiction.

To summarize, the contributions of the paper are as follows. First,
e provide a Lyapunov-like necessary and sufficient condition for

mall-disturbance ISS. Second, under assumptions of coercivity and
he CJS-PL property, we use the Lyapunov characterization to show
hat the perturbed gradient flow for a general constrained nonlinear
rogramming problem is small-disturbance ISS. Finally, we show the
JS-PL property for the LQR loss function, which in turn then implies
hat the standard gradient flow, natural gradient flow, and Newton
radient flow, are all small-disturbance ISS. The remaining contents of
he paper are organized as follows. The notations and preliminaries are
ntroduced in Section 2. In Section 3, the concept of small-disturbance
SS is reviewed, followed by a necessary and sufficient condition. Sec-
ion 4 introduces the perturbed gradient flow for a general constrained
onlinear programming problem over an open admissible set, and it is
hown that the perturbed gradient flow is small-disturbance ISS under
ppropriate conditions on the loss function. In Section 5, we study the
SJ-PL property for the LQR problem, and three different kinds of the
erturbed gradient flows for LQR are shown to be small-disturbance

SS. Some concluding remarks are given in Section 6.
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2. Notations and preliminaries

In this paper, R (R+) denotes the set of (nonnegative) real num-
bers. P𝑛 denotes the set of 𝑛-dimensional real symmetric and positive
efinite matrices. 𝜆min (⋅) and 𝜆max (⋅) denote the minimal and maximal
igenvalues of a real symmetric matrix, respectively. Tr (⋅) denotes the

trace of a square matrix. ‖ ⋅ ‖ denotes the spectral norm of a matrix or
Euclidean norm of a vector, and ‖ ⋅‖𝐹 denotes the Frobenius norm of a
matrix. 𝑛

∞ (𝑚×𝑛
∞ ) denotes the set of measurable and locally essentially

bounded functions 𝑤 ∶ R+ → R𝑛 (𝐾 ∶ R+ → R𝑚×𝑛), endowed with
the essential supremum norm ‖𝑤‖∞ = ess sup𝑠∈R+

‖𝑤(𝑠)‖ (‖𝐾‖∞ =
ess sup𝑠∈R+

‖𝐾(𝑠)‖𝐹 ). 𝑤𝑡 denotes the truncation of 𝑤 at 𝑡, that is, 𝑤𝑡(𝑠) =
(𝑠) if 𝑠 ≤ 𝑡, and 𝑤𝑡(𝑠) = 0 if 𝑠 > 𝑡. 𝐼𝑛 denotes the 𝑛-dimensional identity

matrix. Id denotes the identity function. For any 𝐾1, 𝐾2 ∈ R𝑚×𝑛 and
𝑌 ∈ P𝑛, define the inner product ⟨𝐾1, 𝐾2⟩𝑌 = Tr

(

𝐾𝑇
1 𝐾2𝑌

)

. In addition,
to simplify the notation, we denote ⟨𝐾1, 𝐾2⟩ = ⟨𝐾1, 𝐾2⟩𝐼𝑛 . Recall that
for any 𝐾 ∈ R𝑚×𝑛, ‖𝐾‖

2
𝐹 = ⟨𝐾,𝐾⟩. For any two real symmetric matrices

𝐴 and 𝐵, 𝐴 ≻ 𝐵 means that 𝐴−𝐵 is positive definite, and 𝐴 ⪰ 𝐵 means
that 𝐴 − 𝐵 is positive semidefinite.

In the remainder of this section we gather definitions and technical
results which we shall use throughout the rest of the paper. A number
of these results appear across the literature.

Definition 2.1 (Definitions 2.5 and 24.2 in [34]). A function 𝛼 ∶ R+ →

R+ is a -function if it is continuous, strictly increasing, and vanishes
at zero. For any 𝑑 > 0, a function 𝛼 ∶ [0, 𝑑) → R+ is a [0,𝑑)-function
if it is continuous, strictly increasing, and vanishes at zero. A function
𝛼 ∶ R+ → R+ is a ∞-function if it is a -function and also satisfies
𝛼(𝑟) → ∞ as 𝑟 → ∞. A function 𝛽 ∶ R+ × R+ → R+ is a -function if
for any fixed 𝑡 ≥ 0, 𝛽(⋅, 𝑡) is a -function, and for any fixed 𝑟 ≥ 0, 𝛽(𝑟, ⋅)
is decreasing and 𝛽(𝑟, 𝑡) → 0 as 𝑡 → ∞.

Lemma 2.1 (The Cyclic Property of the Trace, Equation (16) in [35]). For
any 𝑋, 𝑌 ,𝑍 ∈ R𝑛×𝑛, Tr (𝑋𝑌𝑍) = Tr (𝑍𝑋𝑌 ) = Tr (𝑌 𝑍𝑋).

Lemma 2.2 (Trace Inequality [36]). Let 𝑆 ∈ R𝑛×𝑛 be real symmetric and
𝑃 ∈ R𝑛×𝑛 be real symmetric and positive semidefinite. Then,

𝜆min (𝑆) Tr (𝑃 ) ≤ Tr (𝑆𝑃 ) ≤ 𝜆max (𝑆) Tr (𝑃 ) .

Lemma 2.3 (Cauchy–Schwarz Inequality). For any 𝐾1, 𝐾2 ∈ R𝑚×𝑛, 𝑅 ∈
P𝑚, and 𝑌 ∈ P𝑛, we have

⟨𝐾1, 𝑅𝐾2⟩𝑌 ≤
√

⟨𝐾1, 𝑅𝐾1⟩𝑌
√

⟨𝐾2, 𝑅𝐾2⟩𝑌 . (1)

roof. Inequality (1) is obviously true if 𝐾2 = 0. If 𝐾2 ≠ 0, define 𝐾3
s

3 = 𝐾1 −
⟨𝐾1, 𝑅𝐾2⟩𝑌
⟨𝐾2, 𝑅𝐾2⟩𝑌

𝐾2. (2)

t is clear that ⟨𝐾3, 𝑅𝐾2⟩𝑌 = 0. Therefore, by plugging (2) into
𝐾1, 𝑅𝐾1⟩𝑌 , we can obtain

𝐾1, 𝑅𝐾1⟩𝑌 = ⟨𝐾3, 𝑅𝐾3⟩𝑌 +
⟨𝐾1, 𝑅𝐾2⟩

2
𝑌

⟨𝐾2, 𝑅𝐾2⟩
2
𝑌

⟨𝐾2, 𝑅𝐾2⟩𝑌 ≥
⟨𝐾1, 𝑅𝐾2⟩

2
𝑌

⟨𝐾2, 𝑅𝐾2⟩𝑌
. (3)

ence, (1) readily follows from (3). □

emma 2.4. The map ℎ(𝑣) = 1
1+‖𝑣‖𝑣 ∶ R𝑚 →  ∶= {𝑤 ∈ R𝑚

|‖𝑤‖ < 1}
s a homeomorphism.

roof. For any 𝑤 ∈  , let 𝑔(𝑤) = 1
1−‖𝑤‖

𝑤. Clearly, for any 𝑣 ∈ R𝑚,
𝑔(ℎ(𝑣)) = 𝑣 and for any 𝑤 ∈  , ℎ(𝑔(𝑤)) = 𝑤. Hence, 𝑔 is the inverse
function of ℎ, i.e. 𝑔 = ℎ−1. Since both ℎ and 𝑔 are continuous, ℎ is a
3

homeomorphism. □
Lemma 2.5. Suppose 𝜔1, 𝜔2 ∶ R𝑛 → R are continuous, positive definite
with respect to 𝜒∗, and radially unbounded. Then, there exist ∞-functions
𝜌1 and 𝜌2 such that

𝜌1(𝜔2(𝜒)) ≤ 𝜔1(𝜒) ≤ 𝜌2(𝜔2(𝜒)), ∀𝜒 ∈ R𝑛.

Proof. The proof follows from [5, Proposition 2.6] by considering the
open subset as R𝑛 and the compact set as {𝜒∗}. □

Lemma 2.6 (Weak triangle inequality in [37]). For any -function 𝛼, any
∞-function 𝜌, and any nonnegative real numbers 𝑎 and 𝑏, we have

𝛼(𝑎 + 𝑏) ≤ 𝛼◦(Id + 𝜌)(𝑎) + 𝛼◦(Id + 𝜌−1)(𝑏).

Lemma 2.7 (Theorem 18 in [38]). If 𝐴 ∈ R𝑛×𝑛 is Hurwitz, then the
Lyapunov equation

𝐴𝑇 𝑃 + 𝑃𝐴 +𝑄 = 0

has a unique solution for any 𝑄 ∈ R𝑛×𝑛, and the solution can be expressed
as

𝑃 = ∫

∞

0
𝑒𝐴

𝑇 𝑡𝑄𝑒𝐴𝑡d𝑡.

3. Small-disturbance input-to-state stability

Let  denote an open subset of R𝑛, which will be called the admis-
sible set of states. Consider the following nonlinear system

̇ (𝑡) = 𝑓 (𝜒(𝑡), 𝑤(𝑡)), (4)

where 𝑓 ∶  ×R𝑚 → R𝑛 is a smooth function, and inputs 𝑤 ∶ R+ → R𝑚

are measurable and locally essentially bounded functions. Assume the
unforced system has an equilibrium 𝜒∗, i.e. 𝑓 (𝜒∗, 0) = 0.

Definition 3.1 (Definition 2.1 in [5]). A function  ∶  → R+ is a size
function for ( , 𝜒∗) if  is

1. continuous;
2. positive definite with respect to 𝜒∗, i.e. (𝜒∗) = 0 and (𝜒) > 0

for all 𝜒 ≠ 𝜒∗, 𝜒 ∈ ;
3. coercive, i.e. for any sequence {𝜒𝑘}∞𝑘=0, 𝜒𝑘 → 𝜕 or ‖𝜒𝑘‖ → ∞,

it holds that (𝜒𝑘) → ∞, as 𝑘 → ∞.

Definition 3.2 ([15,16]). System (4) is small-disturbance input-to-state
stable (ISS) if there exist a size function  , a constant 𝑑 > 0 (possibly
∞), a -function 𝛽, and a [0,𝑑)-function 𝛾, such that for all inputs 𝑤
essentially bounded by 𝑑 (i.e. ‖𝑤‖∞ < 𝑑), and all initial states 𝜒(0) ∈ ,
𝜒(𝑡) remains in  and satisfies

(𝜒(𝑡)) ≤ 𝛽((𝜒(0)), 𝑡) + 𝛾(‖𝑤‖∞), ∀𝑡 ≥ 0. (5)

As shown in [39], by causality, the same definition would result if
one would replace ‖𝑤‖∞ by ‖𝑤𝑡‖∞ in (5).

Definition 3.3. A continuously differentiable function  ∶  → R is
a small-disturbance ISS-Lyapunov function for system (4) if

1.  is a size function for ( , 𝜒∗);
2. there exist a -function 𝛼1 and a continuous and positive definite

function 𝛼2 such that if ‖𝜇‖ ≤ 𝛼1((𝜒)),

∇(𝜒)𝑇 𝑓 (𝜒, 𝜇) ≤ −𝛼2((𝜒)). (6)

Theorem 3.1. System (4) is small-disturbance ISS if and only if it admits
a small-disturbance ISS-Lyapunov function.

Proof. Sufficiency: This is an adaptation of the proof of the analogous
result for the ISS property [8]. Let 𝑑 = sup𝑟∈R+

𝛼1(𝑟). For any inputs

𝑤 with ‖𝑤‖∞ < 𝑑, define the sublevel set 𝑐 = {𝜒 ∈ |(𝜒) ≤ 𝑐},
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where 𝑐 = 𝛼−11 (‖𝑤‖∞). Borrowing techniques similar to those in the
roof of [8, Theorem 1], we can show that 𝑐 is forward invariant,

i.e. if 𝜒(𝑡0) ∈ 𝑐 for some 𝑡0 ≥ 0, then 𝜒(𝑡) ∈ 𝑐 for all 𝑡 ≥ 𝑡0.
Now, let 𝑡1 = inf{𝑡 ∈ R+|𝜒(𝑡) ∈ 𝑐} ≤ ∞. Therefore, for any 𝑡 ≥ 𝑡1,

we have

(𝜒(𝑡)) ≤ 𝛼−11 (‖𝑤‖∞). (7)

For 𝑡 < 𝑡1, 𝛼1((𝜒(𝑡))) ≥ ‖𝑤‖∞, which implies that
d(𝜒(𝑡))

d𝑡
≤ −𝛼2((𝜒(𝑡))), ∀𝑡 < 𝑡1.

ence, (𝜒(𝑡)) ≤ (𝜒(0)), ∀𝑡 < 𝑡1. By the comparison principle [40,
emma 4.4], there exists a -function 𝛽 such that

(𝜒(𝑡)) ≤ 𝛽((𝜒(0)), 𝑡), ∀𝑡 < 𝑡1. (8)

ombining (7) and (8), the small-disturbance ISS property (5) follows
eadily with 𝛾 = 𝛼−11 .
Necessity: We first prove the case when  = R𝑛. Reparameterize

he input as

(𝑡) = 𝑑
𝑑 + ‖𝑣(𝑡)‖

𝑣(𝑡) =∶ ℎ(𝑣(𝑡)).

It is shown in Lemma 2.4 that ℎ is a homeomorphism from R𝑚 to
 ∶= {𝑤 ∈ R𝑚

|‖𝑤‖ < 𝑑} with 𝑣(𝑡) = ℎ−1(𝑤(𝑡)) = 𝑑
𝑑−‖𝑤(𝑡)‖𝑤(𝑡). With

he input change, we have

̇ (𝑡) = 𝑓 (𝜒(𝑡), ℎ(𝑣(𝑡))) =∶ 𝑓1 (𝜒(𝑡), 𝑣(𝑡)) . (9)

Since 𝛾 is a [0,𝑑)-function and 𝛾1(𝑟) = 𝑑𝑟
𝑑+𝑟 is a -function with the

range [0, 𝑑), 𝛾2 = 𝛾◦𝛾1 is a -function. According to (5), it holds

(𝜒(𝑡)) ≤ 𝛽((𝜒(0)), 𝑡) + 𝛾2(‖𝑣‖∞). (10)

Since  is a size function for (R𝑛, 𝜒∗), according to Lemma 2.5, there
exist ∞-functions 𝜌1 and 𝜌2, such that

𝜌1
(

‖𝜒 − 𝜒∗
‖

)

≤ (𝜒) ≤ 𝜌2
(

‖𝜒 − 𝜒‖∗
)

, ∀𝜒 ∈ R𝑛. (11)

lugging (11) into (10) yields

𝜒(𝑡) − 𝜒∗
‖ ≤ 𝜌−11

[

𝛽
(

𝜌2(‖𝜒(0) − 𝜒∗
‖), 𝑡

)

+ 𝛾2(‖𝑣‖∞)
]

.

By Lemma 2.6, there exist a -function 𝛽1 and a -function 𝛾3, such
that

‖𝜒(𝑡) − 𝜒∗
‖ ≤ 𝛽1

(

‖𝜒(0) − 𝜒∗
‖, 𝑡

)

+ 𝛾3(‖𝑣‖∞).

Hence, system (9) is ISS with respect to 𝑣. According to [39, Theorem
1], there exists an ISS-Lyapunov function 1, such that

𝜌3(‖𝜒 − 𝜒∗
‖) ≤ 1(𝜒) ≤ 𝜌4(‖𝜒 − 𝜒‖∗), ∀𝜒 ∈ R𝑛,

and

∇1(𝜒)𝑇 𝑓1(𝜒, 𝑣) ≤ −𝜌6(‖𝜒 − 𝜒‖∗), (12)

for any 𝜒 ∈ R𝑛 and any 𝑣 ∈ R𝑚 satisfying ‖𝑣‖ ≤ 𝜌5(‖𝜒−𝜒∗
‖), where 𝜌𝑖 (𝑖

= 3,4,5) are ∞-functions, and 𝜌6 is a -function. This, in turn, implies
that if ‖𝑤‖ ≤ 𝛾1◦𝜌5◦𝜌−14 (1(𝜒)), Eq. (12) holds. Since 𝛾1◦𝜌5◦𝜌−14 is a -
function with the range [0, 𝑑), we obtain that 1 is a small-disturbance
ISS-Lyapunov function.

Next, we prove the general case when  is an open subset of R𝑛.
By assumption, for the unforced system 𝜒̇(𝑡) = 𝑓 (𝜒(𝑡), 0), 𝜒∗ is an
asymptotically stable point and the domain of stability is . By [41,
Theorem 2.2] and the Brown–Stallings Theorem [42],  is diffeomor-
phic to R𝑛. We denote by 𝜑 ∶  → R𝑛 the diffeomorphism, 𝜁 = 𝜑(𝜒),
and 𝜁∗ = 𝜑(𝜒∗). As a consequence, we have

𝜁̇ (𝑡) = 𝐽𝜑(𝜑−1(𝜁 (𝑡)))𝑓 (𝜑−1(𝜁 (𝑡)), 𝑤(𝑡)) =∶ 𝑓2(𝜁 (𝑡), 𝑤(𝑡)), (13)

where 𝐽𝜑(𝜒) is the Jacobian matrix of 𝜑(𝜒). Since system (4) is small-
disturbance ISS over  ×R𝑚, system (13) is small-disturbance ISS over
R𝑛 × R𝑚. Then, according to the conclusion from the case of  = R𝑛,

𝑛

4

there exists a small-disturbance ISS-Lyapunov function 1 ∶ R → R+ c
for system (13) with respect to 𝜁∗. It readily follows that 1◦𝜑 ∶
 → R+ is a small-disturbance ISS-Lyapunov function for system (4).
Therefore, the necessity holds. □

Remark 3.1. It should be mentioned that small-disturbance ISS is not
equivalent to the notion of integral ISS [13]. Consider a scalar nonlinear
system 𝜒̇(𝑡) = − 𝜒(𝑡)

1+𝜒(𝑡)2 + 𝑤(𝑡). Differentiating the Lyapunov function

(𝜒) = log(1 + 𝜒2) with respect to time yields ̇ ≤ −2𝜒2

(1+𝜒2)2 + |𝑤|,
hich implies that the system is integral ISS [14]. However, for any
rbitrarily small input 0 < 𝑤̄ < 0.5, the trajectories of the system
iverge whenever the initial conditions 𝜒(0) > 1+

√

1−4𝑤̄2

2𝑤̄ . Hence, the
ystem is not small-disturbance ISS.

. Robustness analysis of perturbed gradient flows

Consider the following constrained nonlinear programming problem

min
𝑧∈

 (𝑧) (14)

here  is an open subset of R𝑛, which is called an admissible set of
ariables;  ∶  → R is an objective function with a global minimizer
∗.

efinition 4.1. A function  ∶  → R is a proper objective function
f

1.  (𝑧) is a smooth function;
2.  (𝑧) −  (𝑧∗) is a size function for (, 𝑧∗);
3. there exists a -function 𝛼3, such that ‖∇ (𝑧)‖ ≥ 𝛼3( (𝑧)− (𝑧∗))

(CJS-PL estimate).

The perturbed gradient flow for (14) is

̇ (𝑡) = −𝜂∇ (𝑧(𝑡)) + 𝑒(𝑡), (15)

here 𝜂 > 0 is a constant, and 𝑒 ∈ 𝑛
∞ denotes the perturbation to the

radient flow. The perturbation 𝑒(𝑡) may arise from inaccurate gradient
stimation for data-driven optimization or arithmetic rounding errors
f numerical computation.

heorem 4.1. If  is a proper objective function, then system (15) is
mall-disturbance ISS.

roof. We will prove that 2(𝑧) =  (𝑧) −  (𝑧∗) is a small-disturbance
SS-Lyapunov function. Firstly, notice that 2 is a size function for
, 𝑧∗). Then, by the Cauchy–Schwarz inequality and Young’s inequal-
ty, it holds

2(𝑧)𝑇 (−𝜂∇ (𝑧) + 𝑒) = −𝜂‖∇ (𝑧)‖2 + ∇ (𝑧)𝑇 𝑒

≤ −
𝜂
2
‖∇ (𝑧)‖2 + 1

2𝜂
‖𝑒‖2 ≤ −

𝜂
2
𝛼23 (2(𝑧)) +

1
2𝜂

‖𝑒‖2,
(16)

where the last inequality is a direct consequence of the CJS-PL property.
Hence, if ‖𝑒‖ ≤ 𝜂

√

2
𝛼3(2(𝑧)), it follows from (16) that

2(𝑧)𝑇 (−𝜂∇ (𝑧) + 𝑒) ≤ −
𝜂
4
𝛼23 (2(𝑧)).

ince 𝛼3 is a -function, 𝜂
√

2
𝛼3 is also a -function. Therefore, by

Definition 3.3, 2(𝑧) =  (𝑧)− (𝑧∗) is a small-disturbance ISS-Lyapunov
unction. According to Theorem 3.1, we conclude that system (15) is
mall-disturbance ISS. □

emark 4.1. Suppose that one has the classical PL inequality, namely
or each 𝑟 > 0, there is a 𝑐𝑟 > 0 such that ‖∇ (𝑧)‖2 ≥ 𝑐𝑟( (𝑧) −  (𝑧∗))
or all 𝑧 in the sublevel set {𝑧 ∈ | (𝑧)− (𝑧∗) ≤ 𝑟}. Then there is some
ositive definite function 𝛼3 such that ‖∇ (𝑧)‖ ≥ 𝛼3( (𝑧) −  (𝑧∗)) for
ll 𝑧 ∈ . By following [14] and (16), it shows that the classical PL
ondition gives integral ISS.
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

𝐾
)

,

Remark 4.2. As discussed in the Introduction, the gradient dominance
condition given by the CJS-PL estimate is weaker than its counterpart
in [5, Definition 4.1], where 𝛼3 is required to be a ∞-function. In
addition, the CJS-PL estimate implies that the perturbed gradient flow
(15) is integral ISS.

5. Application to LQR problem

5.1. Preliminaries of LQR

Consider the following linear time-invariant system

̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) = 𝑥0,

where 𝑥(𝑡) ∈ R𝑛 is the state; 𝑥0 is the initial state; 𝑢(𝑡) ∈ R𝑚 is the control
input; 𝐴 and 𝐵 are constant matrices with compatible dimensions. The
continuous-time LQR aims at finding a state-feedback controller by
solving the following optimal control problem

min
𝑢∈𝑚

∞
1(𝑥0, 𝑢) = ∫

∞

0
𝑥𝑇 (𝑡)𝑄𝑥(𝑡) + 𝑢𝑇 (𝑡)𝑅𝑢(𝑡)d𝑡, (17)

with 𝑄 = 𝑄𝑇 ⪰ 0, and 𝑅 = 𝑅𝑇 ≻ 0. Under the assumption that (𝐴,𝐵) is
stabilizable and (𝐴,

√

𝑄) is observable, as shown in [38, Section 8.4],
he optimal controller is
∗(𝑥(𝑡)) = −𝐾∗𝑥(𝑡), 𝐾∗ = 𝑅−1𝐵𝑇 𝑃 ∗, (18)

here 𝑃 ∗ = (𝑃 ∗)𝑇 is the unique positive definite solution of the
ollowing algebraic Riccati equation (ARE)
𝑇 𝑃 ∗ + 𝑃 ∗𝐴 +𝑄 − 𝑃 ∗𝐵𝑅−1𝐵𝑇 𝑃 ∗ = 0. (19)

Let  = {𝐾 ∈ R𝑚×𝑛
|𝐴−𝐵𝐾 is Hurwitz} denote the admissible set of

ll stabilizing control gains. For any stabilizing controller 𝑢(𝑡) = −𝐾𝑥(𝑡),
here 𝐾 ∈ , and any nonzero initial state 𝑥0 ∈ R𝑛, the corresponding

ost is

1(𝑥0, 𝐾) = ∫

∞

0
𝑥𝑇0 𝑒

(𝐴−𝐵𝐾)𝑇 𝑡(𝑄 +𝐾𝑇𝑅𝐾)𝑒(𝐴−𝐵𝐾)𝑡𝑥0d𝑡 = 𝑥𝑇0 𝑃𝐾𝑥0,

where 𝑃𝐾 = 𝑃 𝑇
𝐾 is the unique positive definite solution of the following

Lyapunov equation

(𝐴 − 𝐵𝐾)𝑇 𝑃𝐾 + 𝑃𝐾 (𝐴 − 𝐵𝐾) +𝑄 +𝐾𝑇𝑅𝐾 = 0. (20)

Since 𝐾∗ is the optimal control gain and 𝑃 ∗ = 𝑃𝐾∗ is the minimal cost
matrix, by [38, page 382], it holds

1(𝑥0, 𝐾) = 𝑥𝑇0 𝑃𝐾𝑥0 ≥ 𝑥𝑇0 𝑃
∗𝑥0 = 1(𝑥0, 𝐾∗), ∀𝑥0 ∈ R𝑛. (21)

This implies that 𝑃𝐾 ⪰ 𝑃 ∗ for all 𝐾 ∈ .
Since the objective function 1 of the LQR problem depends on the

initial condition, we are motivated to study an equivalent optimization
problem (min𝐾∈ 2(𝐾)), which is independent of the initial condition.
For any initial state, an upper bound for 1(𝑥0, 𝐾) is

1(𝑥0, 𝐾) ≤ ‖𝑥0‖
2Tr

(

𝑃𝐾
)

= ‖𝑥0‖
22(𝐾),

where

2(𝐾) ∶= Tr
(

𝑃𝐾
)

, (22)

which is independent of 𝑥0 and is an analytic function [24, Proposition
3.2]. Since 𝑃𝐾 ⪰ 𝑃 ∗ for any 𝐾 ∈ , 2(𝐾) ≥ 2(𝐾∗). In addition, since
Tr

(

𝑃𝐾
)

= Tr (𝑃 ∗) implies 𝑃𝐾 = 𝑃 ∗ and 𝐾 = 𝐾∗, 2(𝐾) has a unique
minimum at 𝐾∗. Thus, the optimal control gain 𝐾∗ can be obtained by
the following policy optimization problem

min
𝐾∈

2(𝐾).

Before calculating ∇2(𝐾), which denotes the gradient of 2(𝐾) over
the Euclidean space, let us define the matrix 𝑌𝐾 ∈ P𝑛 as the solution of

𝑇

5

(𝐴 − 𝐵𝐾)𝑌𝐾 + 𝑌𝐾 (𝐴 − 𝐵𝐾) + 𝐼𝑛 = 0. (23)
It is noticed that according to [43, Lemma 3.18], 𝑌𝐾 ≻ 0 for any 𝐾 ∈ .
In addition, 𝑌 ∗ is defined as the solution of (23) with 𝐾 replaced by
𝐾∗. Since 𝐴 − 𝐵𝐾 is Hurwitz, by Lemma 2.7, 𝑌𝐾 can be expressed as

𝑌𝐾 = ∫

∞

0
𝑒(𝐴−𝐵𝐾)𝑡𝑒(𝐴−𝐵𝐾)𝑇 𝑡d𝑡. (24)

Lemma 5.1. For any 𝐾 ∈ , when it is perturbed by 𝐸 with 𝐾 + 𝐸 ∈ 
(recall that  is an open set), the second-order Taylor series approximation
of 2(𝐾 + 𝐸) is

2(𝐾 + 𝐸) = 2(𝐾) + 2Tr
(

𝐸𝑇 (𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )𝑌𝐾
)

+ Tr
(

𝐸𝑇𝑅𝐸𝑌𝐾
)

+ 2Tr
(

𝐸𝑇 (𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )𝛥𝑌𝐾
)

+ 𝑂(‖𝐸‖

3
𝐹 ),

(25)

where

𝛥𝑌𝐾 ∶= −∫

∞

0
𝑒(𝐴−𝐵𝐾)𝑡(𝐵𝐸𝑌𝐾 + 𝑌𝐾𝐸

𝑇𝐵𝑇 )𝑒(𝐴−𝐵𝐾)𝑇 𝑡, (26)

and 𝑂(‖𝐸‖

3
𝐹 ) is the remainder of the approximation.

Proof. Firstly, we calculate 𝑌𝐾+𝐸 when 𝐾 is perturbed to 𝐾 +𝐸. Using
(23), we have

(𝐴 − 𝐵𝐾 − 𝐵𝐸)𝑌𝐾+𝐸 + 𝑌𝐾+𝐸 (𝐴 − 𝐵𝐾 − 𝐵𝐸)𝑇 + 𝐼𝑛 = 0. (27)

Subtracting (23) from (27), we have

(𝐴 − 𝐵𝐾 − 𝐵𝐸)(𝑌𝐾+𝐸 − 𝑌𝐾 ) + (𝑌𝐾+𝐸 − 𝑌𝐾 )(𝐴 − 𝐵𝐾 − 𝐵𝐸)𝑇

− 𝐵𝐸𝑌𝐾 − 𝑌𝐾𝐸
𝑇𝐵𝑇 = 0.

Let 𝛥𝑌𝐾 denote the first-order term in the Taylor expansion of 𝑌𝐾+𝐸 ,
i.e. 𝑌𝐾+𝐸 = 𝑌𝐾 + 𝛥𝑌𝐾 + 𝑂(‖𝐸‖

2
𝐹 ). Then, 𝛥𝑌𝐾 satisfies

(𝐴 − 𝐵𝐾)𝛥𝑌𝐾 + 𝛥𝑌𝐾 (𝐴 − 𝐵𝐾)𝑇 − 𝐵𝐸𝑌𝐾 − 𝑌𝐾𝐸
𝑇𝐵𝑇 = 0,

which, in turn, implies (26).
Then, we will calculate 𝑃𝐾+𝐸 for the perturbed control gain 𝐾 +𝐸.

By (20), we have

(𝐴 − 𝐵𝐾 − 𝐵𝐸)𝑇 𝑃𝐾+𝐸 + 𝑃𝐾+𝐸 (𝐴 − 𝐵𝐾 − 𝐵𝐸)

+ 𝑄 + (𝐾 + 𝐸)𝑇𝑅(𝐾 + 𝐸) = 0.
(28)

Subtracting (20) from (28) yields

(𝐴 − 𝐵𝐾 − 𝐵𝐸)𝑇 (𝑃𝐾+𝐸 − 𝑃𝐾 ) + (𝑃𝐾+𝐸 − 𝑃𝐾 )(𝐴 − 𝐵𝐾 − 𝐵𝐸)

+ 𝐸𝑇 (𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ) + (𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )𝑇𝐸 + 𝐸𝑇𝑅𝐸 = 0,

which is equivalent to

𝑃𝐾+𝐸 − 𝑃𝐾 = ∫

∞

0
𝑒(𝐴−𝐵𝐾−𝐵𝐸)𝑇 𝑡[𝐸𝑇 (𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )

+ (𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )𝑇𝐸 + 𝐸𝑇𝑅𝐸]𝑒(𝐴−𝐵𝐾−𝐵𝐸)𝑡d𝑡.
(29)

Taking the trace of (29), considering 2(𝐾+𝐸)−2(𝐾) = Tr
(

𝑃𝐾+𝐸 − 𝑃
and using the cyclic property of the trace in Lemma 2.1, we can obtain

2(𝐾 + 𝐸) − 2(𝐾)

= 2Tr
(

𝐸𝑇 (𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )𝑌𝐾+𝐸
)

+ Tr
(

𝐸𝑇𝑅𝐸𝑌𝐾+𝐸
)

.
(30)

Since the first-order Taylor series approximation of 𝑌𝐾+𝐸 is 𝑌𝐾 + 𝛥𝑌𝐾 ,
plugging it into (30), we can obtain (25). □

In (25), the first-order term is 2Tr
(

𝐸𝑇 (𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )𝑌𝐾
)

= ⟨𝐸, 2(𝑅𝐾−
𝐵𝑇 𝑃𝐾 )𝑌𝐾 ⟩, which should be equal to ⟨𝐸,∇2(𝐾)⟩ by Taylor expansion.
In other words, ⟨𝐸, 2(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )𝑌𝐾 ⟩ = ⟨𝐸,∇2(𝐾)⟩ for any small
perturbation 𝐸 ∈ R𝑚×𝑛. Hence, the gradient of the objective function
2(𝐾) is

∇2(𝐾) = 2(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )𝑌𝐾 . (31)

We claim that 2(𝐾) is a proper objective function (Definition 4.1).
To this end, we will first prove several intermediate lemmas providing
bounds on 𝑌𝐾 and 𝑃𝐾 . The following lemma gives a lower bound of
𝜆

(

𝑌
)

.
min 𝐾
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Lemma 5.2. For any 𝐾 ∈ , we have

𝜆min
(

𝑌𝐾
)

≥ 1
2‖𝐴 − 𝐵𝐾∗

‖𝐹 + 2‖𝐵‖‖𝐾 −𝐾∗
‖𝐹

,

here 𝐾∗ is the optimal control gain in (18).

roof. Let 𝑞 ∈ R𝑛 denote a unit eigenvector of 𝑌𝐾 associated with
he eigenvalue 𝜆min

(

𝑌𝐾
)

. Pre and post multiplying (23) by 𝑞𝑇 and 𝑞,
espectively, we have

min
(

𝑌𝐾
)

𝑞𝑇 [(𝐴 − 𝐵𝐾) + (𝐴 − 𝐵𝐾)𝑇 ]𝑞 = −1. (32)

ince 𝑌𝐾 ≻ 0, it follows from (32) that 𝑞𝑇 [(𝐴−𝐵𝐾) + (𝐴−𝐵𝐾)𝑇 ]𝑞 < 0.
onsequently, we have

min
(

(𝐴 − 𝐵𝐾) + (𝐴 − 𝐵𝐾)𝑇
)

= min
‖𝜈‖=1

𝜈𝑇 [(𝐴 − 𝐵𝐾) + (𝐴 − 𝐵𝐾)𝑇 ]𝜈

≤ 𝑞𝑇 [(𝐴 − 𝐵𝐾) + (𝐴 − 𝐵𝐾)𝑇 ]𝑞 < 0.
(33)

here the first equality is obtained by the Rayleigh principle [44,
heorem 4.2.2]. By (32) and (33), it holds

min
(

𝑌𝐾
)

= 1
−𝑞𝑇 [(𝐴 − 𝐵𝐾) + (𝐴 − 𝐵𝐾)𝑇 ]𝑞

≥ 1
−𝜆min

(

(𝐴 − 𝐵𝐾) + (𝐴 − 𝐵𝐾)𝑇
)

≥ 1
2‖𝐴 − 𝐵𝐾∗

‖𝐹 + 2‖𝐵‖‖𝐾 −𝐾∗
‖𝐹

,

here the last line uses the relation ‖𝐵(𝐾∗ − 𝐾)‖ ≤ ‖𝐵‖‖(𝐾∗ − 𝐾)‖ ≤
‖𝐵‖‖(𝐾∗ −𝐾)‖𝐹 . Thus, the proof is completed. □

The following lemma gives the bounds of Tr
(

𝑌𝐾
)

.

Lemma 5.3. Given 𝐾 ∈  and 𝑄 ≻ 0, we have

Tr
(

𝑃𝐾 − 𝑃 ∗)

‖𝑅‖‖𝐾 −𝐾∗
‖

2
𝐹

≤ Tr
(

𝑌𝐾
)

≤
Tr

(

𝑃𝐾
)

𝜆min (𝑄)
(34)

Proof. Considering 𝐾∗ = 𝑅−1𝐵𝑇 𝑃 ∗, we can rewrite (19) as

𝐴 − 𝐵𝐾∗)𝑇 𝑃 ∗ + 𝑃 ∗(𝐴 − 𝐵𝐾∗) +𝑄 + (𝐾∗)𝑇𝑅𝐾∗ = 0. (35)

t follows from (18) and (35) that

𝐴 − 𝐵𝐾)𝑇 𝑃 ∗ + 𝑃 ∗(𝐴 − 𝐵𝐾) +𝑄 + (𝐾∗)𝑇𝑅𝐾∗

+ (𝐾 −𝐾∗)𝑇𝑅𝐾∗ + (𝐾∗)𝑇𝑅(𝐾 −𝐾∗) = 0.
(36)

ubtracting (36) from (20) and completing the squares yield

𝐴 − 𝐵𝐾)𝑇 (𝑃𝐾 − 𝑃 ∗) + (𝑃𝐾 − 𝑃 ∗)(𝐴 − 𝐵𝐾) + (𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗) = 0.

Since 𝐴 − 𝐵𝐾 is Hurwitz, by Lemma 2.7, we have

𝑃𝐾 − 𝑃 ∗ = ∫

∞

0
𝑒(𝐴−𝐵𝐾)𝑇 𝑡(𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗)𝑒(𝐴−𝐵𝐾)𝑡d𝑡. (37)

Taking the trace of (37) and using the cyclic property of the trace in
Lemma 2.1 and Eq. (24), we obtain

Tr
(

𝑃𝐾 − 𝑃 ∗) = Tr
(

∫

∞

0
𝑒(𝐴−𝐵𝐾)𝑡𝑒(𝐴−𝐵𝐾)𝑇 𝑡d𝑡(𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗)

)

= Tr
(

𝑌𝐾 (𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗)
)

.
(38)

By the trace inequality in Lemma 2.2 and considering the following
relation

‖(𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗)‖ ≤ Tr
(

(𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗)
)

≤ ‖𝑅‖‖𝐾 −𝐾∗
‖

2
𝐹 ,

we have

Tr
(

𝑃𝐾 − 𝑃 ∗) ≤ ‖𝑅‖‖𝐾 −𝐾∗
‖

2
𝐹Tr

(

𝑌𝐾
)

.

Hence, the lower bound of Tr
(

𝑌𝐾
)

in (34) is obtained.
Since 𝐴−𝐵𝐾 is Hurwitz, it follows from Lemma 2.7 and (20) that

𝑃𝐾 =
∞
𝑒(𝐴−𝐵𝐾)𝑇 𝑡(𝑄 +𝐾𝑇𝑅𝐾)𝑒(𝐴−𝐵𝐾)𝑡d𝑡. (39)
6

∫0
Taking the trace of (39), and again using the cyclic property of the trace
in Lemma 2.1 and the trace inequality in Lemma 2.2, we have

Tr
(

𝑃𝐾
)

≥ Tr
(

∫

∞

0
𝑒(𝐴−𝐵𝐾)𝑇 𝑡𝑄𝑒(𝐴−𝐵𝐾)𝑡d𝑡

)

= Tr
(

𝑄∫

∞

0
𝑒(𝐴−𝐵𝐾)𝑡𝑒(𝐴−𝐵𝐾)𝑇 𝑡d𝑡

)

≥ 𝜆min (𝑄) Tr
(

𝑌𝐾
)

.

Hence, the right inequality in (34) follows readily. □

Lemma 5.4. For any 𝐾 ∈ , Tr
(

𝑃𝐾 − 𝑃 ∗) ≥ 𝛼4(‖𝐾 −𝐾∗
‖𝐹 ), where 𝛼4

is a ∞-function defined as

𝛼4(𝑟) ∶=
𝜆min (𝑅) 𝑟2

2‖𝐴 − 𝐵𝐾∗
‖𝐹 + 2‖𝐵‖𝑟

, ∀𝑟 ≥ 0.

roof. Taking the trace of (37), and using the cyclic property of the
race in Lemma 2.1, we have

r
(

𝑃𝐾 − 𝑃 ∗) = Tr
(

(𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗)𝑌𝐾
)

≥ 𝜆min
(

𝑌𝐾
)

𝜆min (𝑅) ‖𝐾 −𝐾∗
‖

2
𝐹 .

onsidering the lower bound of 𝜆min
(

𝑌𝐾
)

in Lemma 5.2, we can obtain

Tr
(

𝑃𝐾 − 𝑃 ∗) ≥
𝜆min (𝑅) ‖𝐾 −𝐾∗

‖

2
𝐹

2‖𝐴 − 𝐵𝐾∗
‖𝐹 + 2‖𝐵‖‖𝐾 −𝐾∗

‖𝐹
= 𝛼4(‖𝐾 −𝐾∗

‖𝐹 ). □

Lemma 5.5 (Lemma 3.3 in [24]). The objective function 2(𝐾) is coercive,
i.e. for any sequence {𝐾𝑘}∞𝑘=0, 𝐾𝑘 → 𝜕 or ‖𝐾𝑘‖𝐹 → ∞, it holds 2(𝐾𝑘) →

, as 𝑘 → ∞.

emma 5.6. For any 𝐾 ∈ , let 𝐾 ′ ∶= 𝑅−1𝐵𝑇 𝑃𝐾 and 𝑀𝐾 ∶=
𝐾 −𝐾 ′)𝑇𝑅(𝐾 −𝐾 ′). Then,

r
(

𝑀𝐾
)

≥ 𝑎‖𝐾 −𝐾∗
‖

2
𝐹 + 𝑎′Tr

(

𝑃𝐾 − 𝑃 ∗) , (40)

here 𝑎 and 𝑎′ are constants defined as

∶=
𝜆min (𝑅) 𝜆min (𝑌 ∗)

2𝜆min (𝑌 ∗) + 2𝜆max (𝑌 ∗)
, 𝑎′ ∶= 1

𝜆min (𝑌 ∗) + 𝜆max (𝑌 ∗)
. (41)

roof. We can rewrite (20) as

𝐴 − 𝐵𝐾∗)𝑇 𝑃𝐾 + 𝑃𝐾 (𝐴 − 𝐵𝐾∗) +𝑄 +𝐾𝑇𝑅𝐾

+ (𝐾∗ −𝐾)𝑇𝐵𝑇 𝑃𝐾 + 𝑃𝐾𝐵(𝐾∗ −𝐾) = 0.

onsidering 𝐾 ′ = 𝑅−1𝐵𝑇 𝑃𝐾 and completing the squares, we have

𝐴 − 𝐵𝐾∗)𝑇 𝑃𝐾 + 𝑃𝐾 (𝐴 − 𝐵𝐾∗) +𝑄 + (𝐾∗)𝑇𝑅𝐾∗

+ (𝐾 −𝐾 ′)𝑇𝑅(𝐾 −𝐾 ′) − (𝐾 ′ −𝐾∗)𝑇𝑅(𝐾 ′ −𝐾∗) = 0.
(42)

Subtracting (35) from (42) yields

𝐴 − 𝐵𝐾∗)𝑇 (𝑃𝐾 − 𝑃 ∗) + (𝑃𝐾 − 𝑃 ∗)(𝐴 − 𝐵𝐾∗)

+ (𝐾 −𝐾 ′)𝑇𝑅(𝐾 −𝐾 ′) − (𝐾 ′ −𝐾∗)𝑇𝑅(𝐾 ′ −𝐾∗) = 0.
(43)

Since 𝐴 − 𝐵𝐾∗ is Hurwitz, according to Lemma 2.7, we have

𝐾 − 𝑃 ∗ = ∫

∞

0
𝑒(𝐴−𝐵𝐾

∗)𝑇 𝑡[𝑀𝐾 − (𝐾 ′ −𝐾∗)𝑇𝑅(𝐾 ′ −𝐾∗)]𝑒(𝐴−𝐵𝐾
∗)𝑡d𝑡.

(44)

aking the trace of (44), and using the cyclic property of the trace in
emma 2.1 yield

r
(

𝑃𝐾 − 𝑃 ∗) = Tr
(

𝑌 ∗𝑀𝐾
)

− Tr
(

𝑌 ∗(𝐾 ′ −𝐾∗)𝑇𝑅(𝐾 ′ −𝐾∗)
)

.

y the trace inequality in Lemma 2.2, we have

max
(

𝑌 ∗)Tr
(

𝑀𝐾
)

≥ 𝜆min
(

𝑌 ∗)
⟨(𝐾 ′ −𝐾∗), 𝑅(𝐾 ′ −𝐾∗)⟩

( ∗) (45)

+ Tr 𝑃𝐾 − 𝑃 .
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Using Lemma 2.3 and Young’s inequality, we can obtain

⟨𝐾 −𝐾∗, 𝑅(𝐾 −𝐾∗)⟩

= ⟨(𝐾 −𝐾 ′) + (𝐾 ′ −𝐾∗), 𝑅[(𝐾 −𝐾 ′) + (𝐾 ′ −𝐾∗)]⟩

= ⟨𝐾 −𝐾 ′, 𝑅(𝐾 −𝐾 ′)⟩ + ⟨𝐾 ′ −𝐾∗, 𝑅(𝐾 ′ −𝐾∗)⟩

+ 2⟨𝐾 −𝐾 ′, 𝑅(𝐾 ′ −𝐾∗)⟩

≤ 2⟨𝐾 −𝐾 ′, 𝑅(𝐾 −𝐾 ′)⟩ + 2⟨𝐾 ′ −𝐾∗, 𝑅(𝐾 ′ −𝐾∗)⟩.

(46)

Noticing that Tr
(

𝑀𝐾
)

= ⟨𝐾 − 𝐾 ′, 𝑅(𝐾 − 𝐾 ′)⟩. Plugging (45) into (46)
and using the trace inequality in Lemma 2.2 yield

𝜆min (𝑅) ‖𝐾 −𝐾∗
‖

2
𝐹 ≤

(

2 + 2
𝜆max (𝑌 ∗)
𝜆min (𝑌 ∗)

)

Tr
(

𝑀𝐾
)

− 2
𝜆min (𝑌 ∗)

Tr
(

𝑃𝐾 − 𝑃 ∗) .
(47)

Hence, (40) follows from (47). □

5.2. Perturbed standard gradient flow

In this subsection, we apply small-disturbance ISS to analyze the
robustness property of the perturbed standard gradient flow for the LQR
problem. At any position 𝐾 ∈ , the steepest-descent direction of 2(𝐾)
s the solution to the problem [33]

in
𝐸

⟨𝐸,∇2(𝐾)⟩, subject to ⟨𝐸,𝐸⟩ = 1.

Therefore, by the method of Lagrange multipliers, the steepest-descent
direction of 2(𝐾) is

−∇2(𝐾)∕‖∇2(𝐾)‖𝐹 .

onsequently, along the steepest-descent direction and considering the
xpression of ∇2(𝐾) in (31), the standard gradient flow is [4,24]
d𝐾(𝑠)
d𝑠

= −𝜂∇2(𝐾(𝑠)) = −2𝜂(𝑅𝐾(𝑠) − 𝐵𝑇 𝑃 (𝑠))𝑌 (𝑠),

where 𝜂 > 0 is a constant, 𝑃 (𝑠) ∶= 𝑃𝐾(𝑠), and 𝑌 (𝑠) ∶= 𝑌𝐾(𝑠). It is
seen from (31) that the calculation of the gradient ∇2(𝐾(𝑠)) relies on
the system matrices, which are unknown in the setting of model-free
RL. Many data-driven methods, e.g. approximate dynamic program-
ming [30] and finite-difference algorithms [31], are proposed to nu-
merically approximate the gradient. Therefore, in practice, ∇̂2(𝐾(𝑠)),
instead of ∇2(𝐾(𝑠)), is utilized to optimize the control gain, and the
perturbation 𝑊 (𝑠) = 𝜂[∇2(𝐾(𝑠)) − ∇̂2(𝐾(𝑠))] is unavoidable for the
gradient flow. Hence, with the perturbation 𝑊 ∈ 𝑚×𝑛

∞ , the perturbed
gradient flow of the LQR problem is
d𝐾(𝑠)
d𝑠

= −2𝜂(𝑅𝐾(𝑠) − 𝐵𝑇 𝑃 (𝑠))𝑌 (𝑠) +𝑊 (𝑠). (48)

The following lemma shows that the gradient of 2(𝐾) is lower
bounded by a -function of the deviation from the optimal value
(gradient dominance condition), which is an important property of a
proper objective function in Definition 4.1.

Lemma 5.7. There exists a -function 𝜉1, such that for any 𝐾 ∈ ,

‖∇2(𝐾)‖𝐹 ≥ 𝜉1(2(𝐾) − 2(𝐾∗)).

Proof. Considering the expression of ∇2(𝐾) in (31), the expression of
𝐾 ′ in Lemma 5.6, and the cyclic property of the trace in Lemma 2.1,
we have

Tr
(

∇ 𝑇
2 (𝐾)∇2(𝐾)

)

= 4Tr
(

𝑌 2
𝐾 (𝐾 −𝐾 ′)𝑇𝑅2(𝐾 −𝐾 ′)

)

.

By the trace inequality in Lemma 2.2, it holds

Tr
(

∇ 𝑇
2 (𝐾)∇2(𝐾)

)

≥ 4𝜆min
(

𝑌𝐾
)2 Tr

(

(𝐾 −𝐾 ′)𝑇
√

𝑅𝑅
√

𝑅(𝐾 −𝐾 ′)
)

= 4𝜆min
(

𝑌𝐾
)2 Tr

(
√

𝑅(𝐾 −𝐾 ′)(𝐾 −𝐾 ′)𝑇
√

𝑅𝑅
)

≥ 4𝜆min
(

𝑌𝐾
)2 𝜆min (𝑅) Tr

(
√

𝑅(𝐾 −𝐾 ′)(𝐾 −𝐾 ′)𝑇
√

𝑅
)

( )2 ( )
7

= 4𝜆min 𝑌𝐾 𝜆min (𝑅) Tr 𝑀𝐾 .
By Lemmas 5.2 and 5.6, it follows that

Tr
(

∇ 𝑇
2 (𝐾)∇2(𝐾)

)

≥ 𝜆min (𝑅)
𝑎‖𝐾 −𝐾∗

‖

2
𝐹 + 𝑎′Tr

(

𝑃𝐾 − 𝑃 ∗)

(‖𝐴 − 𝐵𝐾∗
‖𝐹 + ‖𝐵‖‖𝐾 −𝐾∗

‖𝐹 )2
.

(49)

To simplify notations, let

𝑎1 ∶= 𝜆min (𝑅) 𝑎, 𝑎2 ∶= 𝜆min (𝑅) 𝑎′, 𝑎3 ∶= ‖𝐴 − 𝐵𝐾∗
‖𝐹 , 𝑎4 ∶= ‖𝐵‖,

(50)

and

𝜎(𝑟, 𝑝) ∶=
𝑎1𝑟2 + 𝑎2𝑝
(𝑎3 + 𝑎4𝑟)2

.

It is clear that 𝜎(𝑟, 𝑝) ≥ 𝜎(𝑟, 0) for 𝑝 ≥ 0. Taking the derivative of 𝜎(𝑟, 𝑝)
ith respect to 𝑟, we have

𝜕𝜎(𝑟, 𝑝)
𝜕𝑟

=
2𝑎1𝑎3𝑟 − 2𝑎2𝑎4𝑝

(𝑎3 + 𝑎4𝑟)3
.

When 𝑝 ≥ 𝑎1𝑎3
𝑎2𝑎4

𝑟, 𝜎(𝑟, 𝑝) is strictly decreasing in 𝑟. When 𝑝 ≤ 𝑎1𝑎3
𝑎2𝑎4

𝑟, 𝜎(𝑟, 𝑝)
s strictly increasing in 𝑟. Hence, for each 𝑝, 𝑟 = 𝑎2𝑎4

𝑎1𝑎3
𝑝 is the minimum

point of 𝜎(𝑟, 𝑝), and

𝜎(𝑟, 𝑝) ≥ 𝜎(
𝑎2𝑎4
𝑎1𝑎3

𝑝, 𝑝) ≥ 𝜎(
𝑎2𝑎4
𝑎1𝑎3

𝑝, 0) =∶ 𝜉21 (𝑝), (51)

where

𝜉1(𝑝) ∶=
𝑎5𝑝

𝑎3 + 𝑎6𝑝
,

nd

5 ∶=
𝑎2𝑎4
√

𝑎1𝑎3
, 𝑎6 ∶=

𝑎2𝑎24
𝑎1𝑎3

. (52)

Since d𝜉1(𝑝)
d𝑝 = 𝑎3𝑎5

(𝑎3+𝑎6𝑝)2
> 0, 𝜉1 is a -function with the range [0,

√

𝑎1
𝑎4

).
Plugging (51) into (49) yields

∇2(𝐾)‖𝐹 = Tr
(

∇ 𝑇
2 (𝐾)∇2(𝐾)

)

1
2 ≥ 𝜉1

(

Tr
(

𝑃𝐾 − 𝑃
)∗
)

. □

Remark 5.1. As remarked in the Introduction, the gradient dominance
condition in Lemma 5.7, the CJS-PL condition, can be considered as
a generalization of the well-known Polyak-Łojasiewicz (PL) condition
which only holds on a compact set of stabilizing control gains [4,
24]. The gradient dominance condition in Lemma 5.7 removes the
restriction to compact sets.

We next revisit the one-dimensional system mentioned in the Intro-
duction, in order to illustrate Lemma 5.7. Suppose that 𝑚 = 𝑛 = 1 and
𝐴 = 𝐵 = 𝑄 = 𝑅 = 1. In this case, the admissible set is  = {𝐾|𝐾 > 1},
and one obtains

𝑃 ∗ = 1 +
√

2, 𝐾∗ = 1 +
√

2, 𝑌𝐾 = 1
2(𝐾 − 1)

, 𝑌 ∗ =

√

2
4

,

2(𝐾) = 1 +𝐾2

2(𝐾 − 1)
, 2(𝐾) − 2(𝐾∗) =

(𝐾 −𝐾∗)2

2(𝐾 − 1)
.

(53)

The constants in (41), (50) and (52) can be computed as

𝑎 = 1
4
, 𝑎′ =

√

2, 𝑎1 =
1
4
, 𝑎2 =

√

2,

𝑎3 =
√

2, 𝑎4 = 1, 𝑎5 = 2, 𝑎6 = 4.

onsequently, we have

1(𝑝) =
2𝑝

√

2 + 4𝑝
, 𝜉1

(

2(𝐾) − 2(𝐾∗)
)

=
(𝐾 −𝐾∗)2

√

2(𝐾 − 1) + 2(𝐾 −𝐾∗)2
.

The gradient of 2(𝐾) is

∇2(𝐾) = 𝐾2 − 2𝐾 − 1 =
(𝐾 −𝐾∗)2 + 2

√

2(𝐾 −𝐾∗)
.

2(𝐾 − 1)2 2(𝐾 − 1)2
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When 𝐾 ≥ 𝐾∗, ∇2(𝐾) ≥ 0, and
∇2(𝐾)

𝜉1
(

2(𝐾) − 2(𝐾∗)
)

=
2(𝐾 −𝐾∗)3 + 5

√

2(𝐾 −𝐾∗)2 + 6(𝐾 −𝐾∗) + 4
√

2

2(𝐾 −𝐾∗)3 + 4
√

2(𝐾 −𝐾∗)2 + 4(𝐾 −𝐾∗)
≥ 1.

hen 𝐾∗ ≥ 𝐾 > 1, ∇2(𝐾) ≤ 0, and

∇2(𝐾) − 𝜉1
(

2(𝐾) − 2(𝐾∗)
)

=
−4(𝐾 − 1)4 + 7

√

2(𝐾 − 1)3 − 4(𝐾 − 1)2 − 6
√

2(𝐾 − 1) + 8

2
√

2(𝐾 − 1)3 + 4(𝐾 − 1)2(𝐾 −𝐾∗)2
≥ 0.

Therefore, ‖∇2(𝐾)‖ ≥ 𝜉1
(

2(𝐾) − 2(𝐾∗)
)

, which is consistent with
Lemma 5.7.

Based on Lemma 5.7, we are ready to state the main result on the
small-disturbance ISS property of the perturbed standard gradient flow
in (48).

Theorem 5.1. System (48) is small-disturbance ISS with respect to 𝑊 .

Proof. Define

3(𝐾) ∶= 2(𝐾) − 2(𝐾∗) (54)

It follows from (22) that 3(𝐾) = Tr
(

𝑃𝐾 − 𝑃
)∗. Clearly, 3(𝐾) is

mooth in 𝐾 [24, Proposition 3.2]. Since 𝐾∗ is the unique minimum
f 2(𝐾), 3(𝐾) is a positive definite function with respect to 𝐾∗.
he coercivity of 3(𝐾) can be obtained by Lemma 5.5. Therefore, by
efinition 3.1, 3(𝐾) is a size function for (, 𝐾∗). Hence, by Lemma 5.7
nd Definition 4.1, 2 is a proper objective function. According to
heorem 4.1, the proof of Theorem 5.1 is completed. □

As a direct consequence of Theorem 5.1, an estimate of ‖𝐾(𝑠)−𝐾∗
‖𝐹

s provided in the following corollary.

orollary 5.1. There exist a constant 𝑑1 > 0, a -function 𝛽2(⋅, ⋅), and
[0,𝑑1)-function 𝛾4, such that for all perturbations 𝑊 essentially bounded

y 𝑑1 (i.e. ‖𝑊 ‖∞ < 𝑑1), and all initial conditions 𝐾(0) ∈ , 𝐾(𝑠) satisfies

𝐾(𝑠) −𝐾∗
‖𝐹 ≤ 𝛽2(3(𝐾(0)), 𝑠) + 𝛾4(‖𝑊 ‖∞), ∀𝑠 ≥ 0, (55)

here 3 is defined in (54).

roof. Since system (48) is small-disturbance ISS, when ‖𝑊 ‖∞ < 𝑑1,
t holds

3(𝐾(𝑠)) ≤ 𝛽′2(3(𝐾(0)), 𝑠) + 𝛾 ′4(‖𝑊 ‖∞), ∀𝑠 ≥ 0,

here 𝛽′2 is a -function and 𝛾 ′4 is a [0,𝑑1)-function. According to
emma 5.4 and recalling that 3(𝐾(𝑠)) = Tr (𝑃 (𝑠) − 𝑃 )∗, we have

‖𝐾(𝑠) −𝐾∗
‖𝐹 ≤ 𝛼−14

(

𝛽′2(3(𝐾(0)), 𝑠) + 𝛾 ′4(‖𝑊 ‖∞)
)

.

Using Lemma 2.6, we can obtain (55). □

5.3. Perturbed natural gradient flow

In this subsection, we will show that the perturbed natural gradient
flow is small-disturbance ISS. It follows from (38) that

2(𝐾) − 2(𝐾∗) = ⟨𝐾 −𝐾∗, 𝑅(𝐾 −𝐾∗)⟩𝑌𝐾 .

Hence, the objective function can be viewed as a quadratic function
over the Riemannian manifold (, ⟨⋅, ⋅⟩𝑌𝐾 ). As seen in the expression of
∇2(𝐾), the magnitude of the gradient dependents on 𝑌𝐾 , and 𝑌𝐾 may
tend to infinity when 𝐾 → 𝜕, and tend to zero when ‖𝐾‖𝐹 → ∞
(see the illustrative one-dimensional system in (53)). The non-isotropic
property of the magnitude of the gradient may slow down the con-
vergence of the gradient flow. To handle the non-isotropic property,
in [45,46], the natural gradient was proposed as a way to modify
8

the standard gradient search direction according to the Riemannian
structure of the parameter space.

Over the Riemannian manifold (, ⟨⋅, ⋅⟩𝑌𝐾 ), the steepest-descent di-
rection can be obtained by solving

min
𝐸

⟨𝐸,∇2(𝐾)⟩, subject to ⟨𝐸,𝐸⟩𝑌𝐾 = 1. (56)

y the method of Lagrange multipliers, the solution of (56) is

= −∇2(𝐾)𝑌 −1
𝐾 ∕⟨∇2(𝐾)𝑌 −1

𝐾 ,∇2(𝐾)𝑌 −1
𝐾 ⟩

1∕2
𝑌𝐾

.

he natural gradient of 2(𝐾) over the Riemannian manifold (, ⟨⋅, ⋅⟩𝑌𝐾 ),
enoted by grad

(

2(𝐾)
)

, is

rad
(

2(𝐾)
)

∶= ∇2(𝐾)𝑌 −1
𝐾 = 2(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ).

onsidering the perturbation, the natural gradient flow is
d𝐾(𝑠)
d𝑠

= −2𝜂(𝑅𝐾(𝑠) − 𝐵𝑇 𝑃 (𝑠)) +𝑊 (𝑠). (57)

The following lemma is introduced to pave the foundation for the
roof of small-disturbance ISS property of system (57).

emma 5.8. For any 𝐾 ∈ , we have

⟨𝐾 −𝐾∗, 𝑅(𝐾 −𝐾 ′)⟩𝑌 ∗ = Tr
(

𝑃𝐾 − 𝑃 ∗) + ⟨𝐾 −𝐾∗, 𝑅(𝐾 −𝐾∗)⟩𝑌 ∗ . (58)

roof. By completing the squares, we have

𝐾 −𝐾 ′)𝑇𝑅(𝐾 −𝐾 ′) − (𝐾 ′ −𝐾∗)𝑇𝑅(𝐾 ′ −𝐾∗)

= (𝐾 −𝐾 ′)𝑇𝑅(𝐾 −𝐾∗) + (𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾 ′) − (𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗).

herefore, we can rewrite (43) as

𝐴 − 𝐵𝐾∗)𝑇 (𝑃𝐾 − 𝑃 ∗) + (𝑃𝐾 − 𝑃 ∗)(𝐴 − 𝐵𝐾∗) + (𝐾 −𝐾 ′)𝑇𝑅(𝐾 −𝐾∗)

+ (𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾 ′) − (𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗) = 0.

ince 𝐴 − 𝐵𝐾∗ is Hurwitz, by Lemma 2.7 we have

𝐾 − 𝑃 ∗ = ∫

∞

0
𝑒(𝐴−𝐵𝐾

∗)𝑇 𝑡[(𝐾 −𝐾 ′)𝑇𝑅(𝐾 −𝐾∗)

+ (𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾 ′) − (𝐾 −𝐾∗)𝑇𝑅(𝐾 −𝐾∗)]𝑒(𝐴−𝐵𝐾∗)𝑡d𝑡.
(59)

aking the trace of (59) and using the cyclic property of trace in
emma 2.1, we have (58). □

Next, we will prove the small-disturbance ISS property of the per-
urbed natural gradient flow.

heorem 5.2. Given 𝑄 ≻ 0, system (57) is small-disturbance ISS with
espect to 𝑊 .

roof. Let 4(𝐾) ∶= 1
2 ⟨𝐾 −𝐾∗, 𝐾 − 𝐾∗

⟩𝑌 ∗ . Clearly, by Lemma 2.2,
4(𝐾) is bounded by
1
2
𝜆min

(

𝑌 ∗)
‖𝐾 −𝐾∗

‖

2
𝐹 ≤ 4(𝐾) ≤ 1

2
‖𝑌 ‖∗‖𝐾 −𝐾∗

‖

2
𝐹 .

hen, it holds:

∇4(𝐾),−2𝜂(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ) +𝑊 ⟩

= −2𝜂⟨𝐾 −𝐾∗, 𝑅(𝐾 −𝐾 ′)⟩𝑌 ∗ + ⟨𝐾 −𝐾∗,𝑊 ⟩𝑌 ∗ .

ecall that 𝐾 ′ = 𝑅−1𝐵𝑇 𝑃𝐾 . According to Lemma 5.8, we obtain

∇4(𝐾),−2𝜂(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ) +𝑊 ⟩

= −𝜂Tr
(

𝑃𝐾 − 𝑃 ∗) − 𝜂⟨𝐾 −𝐾∗, 𝑅(𝐾 −𝐾∗)⟩𝑌 ∗ + ⟨𝐾 −𝐾∗,𝑊 ⟩𝑌 ∗

≤ −𝜂Tr
(

𝑃𝐾 − 𝑃 ∗) − 𝜂⟨𝐾 −𝐾∗, 𝑅(𝐾 −𝐾∗)⟩𝑌 ∗

+ ⟨𝐾 −𝐾∗, 𝐾 −𝐾∗
⟩

1
2
𝑌 ∗ ⟨𝑊 ,𝑊 ⟩

1
2
𝑌 ∗

≤ −𝜂Tr
(

𝑃𝐾 − 𝑃 ∗) −
𝜂𝜆min (𝑅)

2
⟨𝐾 −𝐾∗, 𝐾 −𝐾∗

⟩𝑌 ∗ +
‖𝑌 ∗

‖

2𝜂𝜆min (𝑅)
‖𝑊 ‖

2
𝐹 ,

(60)
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where the first inequality follows from Lemma 2.3, and the last in-
equality is according to Young’s inequality and the trace inequality in
Lemma 2.2.

Differentiating 3(𝐾) = 2(𝐾) − 2(𝐾∗) and considering (31) yield

⟨∇3(𝐾),−2𝜂(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ) +𝑊 ⟩ = −4𝜂⟨𝑅𝐾 − 𝐵𝑇 𝑃𝐾 , 𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ⟩𝑌𝐾

+ 2⟨𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ,𝑊 ⟩𝑌𝐾

≤ −3𝜂⟨𝑅𝐾 − 𝐵𝑇 𝑃𝐾 , 𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ⟩𝑌𝐾 + 1
𝜂
⟨𝑊 ,𝑊 ⟩𝑌𝐾 ,

where the last line is obtained by Lemma 2.3 and Young’s inequality.
Using Lemma 5.3 and the trace inequality in Lemma 2.2, we have

⟨∇3(𝐾),−2𝜂(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ) +𝑊 ⟩ ≤ −3𝜂⟨𝑅𝐾 − 𝐵𝑇 𝑃𝐾 , 𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ⟩𝑌𝐾

+
3(𝐾) + Tr (𝑃 )∗

𝜂𝜆min (𝑄)
‖𝑊 ‖

2
𝐹 . (61)

Let 5(𝐾) ∶= 3(𝐾) + 4(𝐾). Since 3 is a size function and 4 is
positive definite with respect to 𝐾∗, 5 is also a size function. It follows
from (60) and (61) that

⟨∇5(𝐾),−2𝜂(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ) +𝑊 ⟩ ≤ −𝜂3(𝐾) − 𝜂𝜆min (𝑅)4(𝐾)

+
3(𝐾) + 𝑏1

𝜂𝑏2
‖𝑊 ‖

2
𝐹 ,

(62)

where

𝑏1 ∶=
‖𝑌 ∗

‖𝜆min (𝑄)
2𝜆min (𝑅)

+ Tr
(

𝑃 ∗) , 𝑏2 ∶= 𝜆min (𝑄) , 𝑏3 ∶= 𝜂2𝜆min (𝑅) 𝜆min (𝑄) .

Without losing generality, assume that 𝜆min (𝑅) ≤ 1. Then, it follows
from (62) that

⟨∇5(𝐾),−2𝜂(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ) +𝑊 ⟩ ≤ −𝜂𝜆min (𝑅)5(𝐾) +
5(𝐾) + 𝑏1

𝜂𝑏2
‖𝑊 ‖

2
𝐹 .

Thus, if

‖𝑊 ‖𝐹 ≤
(

𝑏35(𝐾)
25(𝐾) + 2𝑏1

)
1
2
=∶ 𝜉2(5(𝐾)),

it is guaranteed that

⟨∇5(𝐾),−2𝜂(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 ) +𝑊 ⟩ ≤ −
𝜂𝜆min (𝑅)

2
5(𝐾).

Since d𝜉2(𝑟)
d𝑟 = 1

2 𝜉
−1
2 (𝑟) 2𝑏1𝑏3

(2𝑟+2𝑏1)2
> 0, ∀𝑟 > 0, 𝜉2 is a -function, and its

range is [0,
√

𝑏3
2 ). Consequently, 5 is a small-disturbance ISS-Lyapunov

unction. According to Theorem 3.1, we conclude that system (57) is
mall-disturbance ISS. □

.4. Perturbed Newton gradient flow

By applying the results of Section 3, we will show that the perturbed
ewton gradient flow is small-disturbance ISS. The Newton gradient
escent method was first adopted in [47] for solving the LQR problem,
nd it converges to the optimum at a quadratic convergence rate.
he Newton direction is derived from the second-order Taylor series
pproximation of 2(𝐾 + 𝐸), which, according to Lemma 5.1, can be

expressed as

2(𝐾 + 𝐸) = 2(𝐾) + ⟨𝐸, 2(𝑅𝐾 − 𝐵𝑇 𝑃𝐾 )⟩𝑌𝐾 + ⟨𝐸,𝑅𝐸⟩𝑌𝐾 + 𝑂(‖𝐸‖

2
𝐹 ).

By minimizing the second-order Taylor series approximation of 2(𝐾)
over 𝐸, the Newton direction is obtained as −(𝐾 −𝑅−1𝐵𝑇 𝑃𝐾 ). Consid-
ering the perturbation, the Newton gradient flow is
d𝐾(𝑠)
d𝑠

= −𝜂(𝐾(𝑠) − 𝑅−1𝐵𝑇 𝑃 (𝑠)) +𝑊 (𝑠). (63)

Theorem 5.3. Given 𝑄 ≻ 0, system (63) is small-disturbance ISS with
respect to 𝑊 .

Proof. The proof follows from the proof of Theorem 5.2 by defining
1
⟨𝐾 −𝐾∗, 𝑅(𝐾 −𝐾∗)⟩ . □
9

6(𝐾) = 3(𝐾) + 2 𝑌 ∗
6. Conclusions

In this paper, we studied the small-disturbance ISS property of
continuous-time gradient flows on an open subset of certain Euclidean
space. In the framework of small-disturbance ISS, the transient behav-
ior, the convergence speed, and the robustness to the perturbations of
gradient flows can be well quantified. As a by-product, a Lyapunov
characterization of small-disturbance ISS is given. Upon specification to
the policy optimization of the LQR problem, three kinds of perturbed
gradient flows, including standard gradient flow, natural gradient flow,
and Newton gradient flow, were studied in greater details. In particular,
they are all small-disturbance ISS.
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