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Abstract— In this paper, we study systems of time-invariant
ordinary differential equations whose flows are non-expansive
with respect to a norm, meaning that the distance between
solutions may not increase. Since non-expansiveness (and con-
tractivity) are norm-dependent notions, the topology of ω-limit
sets of solutions may depend on the norm. For example, and
at least for systems defined by real-analytic vector fields, the
only possible ω-limit sets of systems that are non-expansive with
respect to polyhedral norms (such as ℓp norms with p = 1 or
p = ∞) are equilibria. In contrast, for non-expansive systems
with respect to Euclidean (ℓ2) norm, other limit sets may arise
(such as multi-dimensional tori): for example linear harmonic
oscillators are non-expansive (and even isometric) flows, yet
have periodic orbits as ω-limit sets. This paper shows that the
Euclidean linear case is what can be expected in general: for
flows that are non-expansive with respect to any strictly convex
norm (such as ℓp for any p ̸= 1,∞), and if there is at least
one bounded solution, then the ω-limit set of every trajectory
is also an ω-limit set of a linear time-invariant system.

I. INTRODUCTION

Contraction theory concerns dynamical systems which
posses some kind of metric, typically arising from a norm,
such that for every two trajectories, their distance is nonin-
creasing or even decreasing over time. The use of contraction
analysis in control theory was pioneered by Slotine and
collaborators [1]. Expositions of contractivity in dynamical
systems can be found for example in [2], [3], and [4], which
also show that in general non-Euclidean norms must be
considered when analyzing nonlinear dynamics. The notion
of contraction has also been generalized to Finsler manifolds
in [5]. Most work deals with cases when the distance
between trajectories is strictly decreasing, though sometimes
the situation arises where all we can say is that this distance
is nonincreasing. Our paper is concerned with dynamical
conclusions that one can draw when a dynamical system has
a merely nonincreasing norm.
Contraction theory has many connections to control theory
and dynamical systems, as well as other fields. It has appli-
cations to data-driven control [6], reaction diffusion systems
[7], Hopfield neural networks [8], Riemannian manifolds [9],
network systems [10], and system safety [11]. Establishing
contractivity of a system allows one to conclude many
desirable stability properties. This makes contraction theory a
useful tool in the context of certifying robustness guarantees.
Our main results stated informally are as follows. In the
following suppose we are given a system that possesses at
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least one bounded trajectory. If a system is non-expansive
with respect to some norm, then solutions will converge to
a global attractor set on which the system evolves isomet-
rically. The structure of these ω-limit sets is dependent on
the particular choice of norm for which the system is non-
expansive. If the norm is strictly convex then the equilibrium
set is convex, and the system is equivalent to a linear system
on the global attractor. In this case, we show that each ω-limit
set has the structure of an n-torus for some integer n. This
differs from the situation of polyhedral norms for analytic
vector fields. In this case the ω-limit sets are always single
points. In R2, weighted ℓ2 norms are the only norms for
which a non-expansive system (with respect to a weighted
ℓ2 norm) does not necessarily converge to the equilibrium
set. At the end we describe some examples.

II. BACKGROUND

In the following we will describe norms and dynamical
systems with special properties relating to the norm. We will
assume that we have an autonomous system ẋ = f(x) where
x ∈ Rn and f(·) is C1. We assume that we are given a
particular norm ∥.∥ on Rn. We will define the forward time
evolution of the system ẋ = f(x) to be ϕt. We assume that
ϕt is defined for all t ≥ 0. Given a vector field f(x), we let
the Jacobian evaluated at a point x be Jf (x).
Now we will recall a few basic definitions that will be used
in the sequel. A state space X is a forward invariant set for
the system. An ω limit set of a point x is the set of points
∩t≥0∪s≥tϕs(x). A system ẋ = f(x) is non-expansive with
respect to a norm ∥.∥ if for all t > 0 and all x, y in the
system’s state space we have that ∥ϕt(x)−ϕt(y)∥ ≤ ∥x−y∥.
In other words, the flow maps are Lipschitz with Lipschitz
constant 1. The global attractor of a system ẋ = f(x)
(relative to the state space X) is the set A = ∩t≥0ϕt(X).
An isometry of a normed vector space V is a mapping
F : V → V such that ∥x − y∥ = ∥F (x) − F (y)∥ for all
x, y ∈ V . By GLn we mean the real general linear group of
degree n. A discrete subgroup of GLn is a group G ⊆ GLn

such that for every g ∈ G there exists an open ball Og such
that Og ∩G = g. For any positive integer n we indicate the
n-torus by the n product S1 ×S1 × ...×S1 = (S1)n where
S1 is the circle.

III. SOME RESULTS ON NONEXPANSIVITY

While our results apply to non-compact state spaces, we can
motivate working on compact state spaces by using Corol-
lary 1 below, which says that, under minimal assumptions,
we can restrict analysis to a sufficiently large compact ball
which contains the initial conditions of interest. The result



will follow from Proposition 1. First we recall a well-known
lemma that extends Brouwer’s fixed point theorem to flows
(Yorke’s fixed point theorem in [4]); for completeness, we
provide a self-contained proof.

Lemma 1. Suppose we have a C1 vector field f(x) and a
compact and convex forward invariant set X . Then f(x) has
an equilibrium on X .

Proof. Suppose f(x) did not have an equilibrium on X .
Then for any point p there exists a time tp such that for
t < tp that ϕt(p) ̸= p, i.e., p is taken to a different point.
In fact, this tp also works for all points in a neighborhood
of p (this can be seen via the Flow-box Theorem). Cover
X with all such neighborhoods. Since X is compact we can
then pick finitely many of these neighborhoods to cover x.
Then we can take tf to be the minimum of all the times
corresponding to these neighborhoods. Thus for t < tf we
have that ϕt has no fixed points, contradicting Brouwer’s
fixed point theorem. Thus f must have a fixed point.

The following result, and the main ideas of its proof, are
given as Theorem 19 in [10]. We provide a streamlined proof
for completeness.

Proposition 1. Suppose we have a non-expansive time-
invariant system ẋ = f(x) which has a convex forward in-
variant set. Then exactly one of the following two conditions
holds:

1) Every trajectory of the system is unbounded.
2) The system has an equilibrium point x∗ (that is

f(x∗) = 0), and every trajectory is bounded.

Proof. First assume we have a bounded trajectory with initial
point x. Thus we can consider ω(x), the ω-limit set of x,
which is a nonempty backward and forward invariant com-
pact set for the system. For arbitrary ϵ > 0 define Bϵ(p) =
{y ∈ Rn|∥y − p∥ ≤ ϵ}. Consider Cϵ = ∩p∈ω(x)Bϵ(p). Note
that Cϵ is convex and compact, since it is the intersection
of convex and compact sets. If y ∈ Cϵ then we must have
for all p ∈ ω(x) that ∥y − p∥ ≤ ϵ, due to the definition
of Cϵ. Fix an arbitrary t ≥ 0 and p ∈ ω(x). Since ω(x) is
backward invariant there exists p′ = ϕ−t(p) ∈ ω(x) such
that ϕt(p

′) = p. Since the system is non-expansive we must
have that ∥ϕt(y) − ϕt(p

′)∥ ≤ ∥y − p′∥ ≤ ϵ. From this we
have that

∥ϕt(y)− p∥ = ∥ϕt(y)− ϕt(p
′)∥ ≤ ϵ.

Since p was arbitrary, we must have that ϕt(y) ∈ Cϵ for all
t ≥ 0, and so Cϵ is forward invariant for all ϵ ≥ 0 (if it is
empty the statement is trivial).
Now we can pick ϵ large enough such that Cϵ is nonempty
(which is clearly possible since ω(x) is compact). Then we
can apply Lemma 1 to conclude that ẋ = f(x) has a fixed
point in Cϵ.

Note that a non-expansive system can have unbounded
trajectories, such as the system ẋ = 1. This is non-expansive
with respect to any norm.

The following corollary follows immediately from Proposi-
tion 1.

Corollary 1. Suppose we have a system that is non-
expansive with respect to a norm ∥.∥ and that has a precom-
pact trajectory. Then the system has at least one equilibrium
point p, and every norm ball Bp,d = {x ∈ Rn|∥p−x∥ ≤ d}
is a compact forward invariant set.

Thus, for the remainder of this section, we will make
the assumption, restricting if necessary to balls around an
equilibrium, that all state spaces X we consider are convex
and compact.

A. Compact state space

Lemma 2. Suppose we have a non-expansive dynamical
system ẋ = f(x) with a C1 vector field f(x) and a compact
forward invariant state space X . Then for any ϵ > 0 there
exists T > 0 such that for all t, s > T and for all x, y ∈ X
we have that |∥ϕt(x)− ϕt(y)∥ − ∥ϕs(x)− ϕs(y)∥| < ϵ.

Proof. For the following let n ∈ Z. Consider the sequence
of functions dn : X × X → R≥0 for n ≥ 0 (here we give
X ×X the sup product metric) defined by

dn(x, y) = ∥ϕn(x)− ϕn(y)∥.

We have that X ×X is a compact set. Note that dn satisfies
the triangle inequality (since the norm satisfies it) and is
symmetric. Due to the nonexpansivity of ϕn we have that
dn(x, y) is monotonically decreasing in n for any given
(x, y). Due to the nonnegativity of norms we also have that
dn ≥ 0 for each n and so dn is bounded below. Thus as
n → ∞ we have pointwise convergence to some function d.
Note that dn is also a continuous function for each n. This
is due to ϕn and the norm function both being continuous.
Lastly, we note that d(x, y) is a continuous function on X×
X . Indeed, by the triangle inequality we have that for all
x, y, x′, y′ ∈ X:

dn(x
′, y′)− dn(x

′, x)− dn(y
′, y) ≤ dn(x, y)

dn(x, y) ≤ dn(x
′, x) + dn(x

′, y′) + dn(y
′, y).

Suppose that (x, y), (x′, y′) are close to each other in X×X ,
i.e., max{∥x−x′∥, ∥y−y′∥} < ϵ. Due to nonexpansivity, we
have that max{∥ϕn(x) − ϕn(x

′)∥, ∥ϕn(y) − ϕn(y
′)∥} < ϵ

for all n ≥ 0. Thus we have that 0 ≤ dn(x, x
′) < ϵ and

0 ≤ dn(y, y
′) < ϵ for all n ≥ 0. Using these bounds in the

previous inequality, we now have that

dn(x
′, y′)− 2ϵ < dn(x, y) < dn(x

′, y′) + 2ϵ.

Thus we have that |dn(x, y)−dn(x
′, y′)| < 2ϵ for all n ≥ 0.

Taking the limit in n, we see that |d(x, y)− d(x′, y′)| ≤ 2ϵ.
Thus the function d is continuous.
Now we can apply Dini’s theorem and so we have that dn
in fact converges uniformly to d. Thus there exists N such
that for n ≥ N we have that dn(x, y) − d(x, y) < ϵ for all
x, y ∈ X . Thus we also have that dn(x, y)−dn+k(x, y) < ϵ
for all n ≥ N and all integers k ≥ 0 (i.e., this sequence is a
Cauchy sequence at each point (x, y)).



Note this lemma says that points in the state space uniformly
approach their minimum distance from each other. We then
have the following:

Corollary 2. Suppose we have a C1 system ẋ = f(x) with
compact forward invariant state space X . Then for any real
number t ≥ 0 the time evolution operator ϕt is an isometry
on the set A = ∩t≥0ϕt(X) (i.e., the global attractor of the
system).

Proof. Defining dn(x, y) and d(x, y) as in Lemma 2, we
know that for any ϵ > 0 there is an integer N > 0 so that
dn(x

′, y′)−dn+k(x
′, y′) < ϵ for all x′, y′ ∈ A and all n > N

and k > 0. Pick now any x, y ∈ A and any two integers
n > 0 and k > 0 such that n > N . Since A ⊆ ϕn(X),
we have that there exist x′, y′ such that ϕn(x

′) = x and
ϕn(y

′) = y. We have that

∥x− y∥ − ∥ϕk(x)− ϕk(y)∥
= ∥ϕn(x

′)− ϕn(y
′)∥ − ∥ϕk+n(x

′)− ϕk+n(y
′)∥

= dn(x
′, y′)− dn+k(x

′, y′) < ϵ.

Since ϵ can be arbitrarily small, we have that ∥x − y∥ −
∥ϕk(x) − ϕk(y)∥ = 0, or ∥ϕk(x) − ϕk(y)∥ = ∥x − y∥.
Since k was arbitrary, this holds for all integers k ≥ 0. Note
that this implies, for example, for each 0 ≤ t ≤ 1 that (by
nonexpansivity)

∥ϕ0(x)− ϕ0(y)∥ ≥ ∥ϕt(x)− ϕt(y)∥ ≥ ∥ϕ1(x)− ϕ1(y)∥.

Since the left and right terms are equal, all the inequalities
are in fact equalities. The same argument can be applied to
any positive real number t.
Thus for x, y ∈ A and any real number t ≥ 0 we have
that ∥ϕt(x) − ϕt(y)∥ = ∥x − y∥, and so the time evolution
operator is an isometry on this set.

Observe that A is nonempty, since it is an intersection of
a decreasing family of compact sets. A key property is that
every trajectory converges to A, as shown next.

Lemma 3. Every ω-limit set is contained in A.

Proof. Take an arbitrary x ∈ X . Since the state space X
is compact, the solution starting from x has a nonempty
compact, connected, and backward and forward invariant ω-
limit set ω(x), and the solution converges to it. Pick any y ∈
ω(x). Then for all t > 0 we have that ϕ−t(y) ∈ ω(x) ⊆ X
and so y ∈ ϕt(X). Thus y ∈ ∩t>0ϕt(X) = A. Since y was
arbitary, this shows that ω(x) ⊆ A.

One could also derive Corollary 2 by appealing to a result
from Freudenthal and Hurewicz [12] which showed that
every non-expansive map from a totally bounded metric
space (for example, any compact space) onto itself must be
an isometry; see also [13].

B. Strictly convex norms

Recall that a norm ∥.∥ is strictly convex if and only if
whenever x and y are two distinct points with ∥x∥ = r
and ∥y∥ = r for some r > 0, we have that for 0 < α < 1

then ∥αx+(1−α)y∥ < r. For the case where a given norm
is strictly convex we have the following uniqueness lemma:

Lemma 4. Suppose we have a strictly convex norm ∥.∥. Pick
two distinct points x, y and any number 0 ≤ a < ∥x − y∥.
Then the point z that satisfies ∥x − z∥ = a < ∥x − y∥ and
∥x− y∥ = ∥x− z∥+ ∥z − y∥ exists and is unique.

Proof. Note there exists such a point, since we can simply
take z = (1− a

∥x−y∥ )x+ a
∥x−y∥y.

If there were two points z and z′ with the claimed property,
consider x − z and x − z′. Pick any number α such that
0 < α < 1. Let z′′ = αz + (1− α)z′. Note we have that

x− z′′ = α(x− z) + (1− α)(x− z′)

and
y − z′′ = α(y − z) + (1− α)(y − z′) .

By the triangle inequality we have that

∥x− z′′∥+ ∥z′′ − y∥ ≥ ∥x− y∥.

Note that ∥x−z∥ = ∥x−z′∥ = a and ∥y−z∥ = ∥y−z′∥ =
∥x− y∥ − a. By strict convexity we have that

∥x− z′′∥ = ∥α(x− z) + (1− α)(x− z′)∥ < a

and

∥y − z′′∥ = ∥α(y − z) + (1− α)(y − z′)∥ < ∥x− y∥ − a .

This gives us ∥x− z′′∥+ ∥z′′ − y∥ < ∥x− y∥, contradicting
the triangle inequality; thus the point is unique.

Notice that Lemma 4 need not hold for non-strictly convex
norms. For example, consider the ℓ1 norm and x = (0, 0),
y = (1, 1). Then with a = 1/2 we can pick z1 = (0, 1)
and z2 = (1, 0) to satisfy the property that ∥x − y∥ = 2 =
1 + 1 = ∥x− z∥+ ∥z − y∥.
From now on in this section, we assume that the norm being
considered is strictly convex.

Lemma 5. For x, y ∈ A, t ≥ 0 and 1 ≥ λ ≥ 0 we have that
ϕt(λx+ (1− λ)y) = λϕt(x) + (1− λ)ϕt(y)

Proof. Let d(x, y) = ∥x − y∥. Let z = λx + (1 − λ)y,
d(z, x) = a and d(z, y) = b. We have that d(x, y) =
d(z, y) + d(z, x) = a + b. Note that z is the unique point
(due to Lemma 4) such that d(z, x) and d(z, y) take on these
real values a and b, respectively.
By Corollary 2, we have that d(ϕt(x), ϕt(y)) = d(x, y) =
a + b. Since z might not be in A, we cannot yet as-
sert the isometric relationships d(ϕt(z), ϕt(x)) = a or
d(ϕt(z), ϕt(y)) = b. However, by nonexpansivity we have
that d(ϕt(z), ϕt(x)) ≤ d(z, x) = a, and d(ϕt(z), ϕt(y)) ≤
d(z, y) = b. By the triangle inequality we have that

a+ b = d(ϕt(x), ϕt(y)))

≤ d(ϕt(z), ϕt(x)) + d(ϕt(z), ϕt(y))

≤ a+ b.

Since the left and right hand are the same we must have that
d(ϕt(z), ϕt(x)) = a and d(ϕt(z), ϕt(y)) = b, as desired.



Thus ϕt(z) satisfies the conditions in Lemma 4 where x
and y are replaced with ϕt(x) and ϕt(y), respectively. This
implies ϕt(z) = λϕt(x) + (1 − λ)ϕt(y). Indeed, we have
that d(ϕt(z), ϕt(x)) = ∥ϕt(z) − ϕt(x)∥ = (1 − λ)∥ϕt(y) −
ϕt(x)∥ = (1 − λ)∥y − x∥ = a and similarly we have that
d(ϕt(z), ϕt(y)) = b.

Lemma 6. The set A is backward and forward invariant.

Proof. First observe that, for any s > t, ϕs(X) ⊆ ϕt(X).
Indeed, if x ∈ ϕs(X) then x = ϕs(z) = ϕt(ϕs−t(z)) for
some z ∈ X . Thus x = ϕt(y), with y := ϕs−t(z).
Now recall A = ∩t>0ϕt(X). By our previous observation for
any s > 0 we also have that A = ∩t>sϕt(X). We have that
x ∈ A iff x ∈ ϕt(X) for all t > 0 iff for any s > 0 we have
that ϕs(x) ∈ ϕt(X) for t > s iff ϕs(x) ∈ ∩t>sϕt(X) = A.
Thus A is forward invariant.
Take again x ∈ A. Now for each s > 0 we have that x ∈ A
iff x ∈ ∩t>sϕt(X) iff ϕ−s(x) ∈ ∩t>0ϕt(X) = A. Since s
was arbitrary, A must be backwards invariant as well.

Lemma 7. The set A is convex.

Proof. Take arbitrary x, y ∈ A. Pick any 0 < λ < 1. We
need to show that z := λx + (1 − λ)y ∈ A (z exists due
to the assumed convexity of our state space). Since A is
backwards invariant by Lemma 6, for all t > 0 there exist
x′, y′ ∈ A such that ϕt(x

′) = x and ϕt(y
′) = y. By Lemma

5 this means that, for each 0 < λ < 1:

ϕt(λx
′+(1−λ)y′) = λϕt(x

′)+(1−λ)ϕt(y
′) = λx+(1−λ)y.

The above equation implies that for all t > 0, we can find a
z′ = λx′ + (1− λ)y′ such that ϕt(z

′) = z (note that neither
z nor z′ are required to be in A). Thus for all t > 0 we must
have that z ∈ ϕt(A) ⊆ ϕt(X). Thus z ∈ ∩t>0ϕt(X) = A.
In other words, for all x, y ∈ A and for all 0 < λ < 1 we
have that λx+ (1− λ)y ∈ A, as claimed.

Remark: The assumption that our norm is strictly convex is
necessary for the conclusion that A is convex. To see this,
we show an example of a non-expansive system with respect
ℓ∞ norm but for which A is not convex. The system is:

ẋ = −x+ f(y)

ẏ = 0

where f :R→R has Lipschitz constant 1, i.e. |f(c)− f(d)| ≤
|c− d| for all c, d ∈ R. We claim that this system is
non-expansive with respect to the ℓ∞ norm. To prove this,
consider two solutions ξ(t) = (x1(t), y1(t)) and η(t) =
(x2(t), y2(t)), and write δ(t) := x1(t)− x2(t). Let

a := δ(0) = x1(0)− x2(0)

b := y1(0)− y2(0)

b′ := f(y1(0))− f(y2(0)) .

Observe that δ̇ = −δ + b′, because yi(t) ≡ yi(0). Therefore

δ(t) = e−ta+ (1− e−t)b′ .

Applying the triangle inequality and using that |b′| ≤ |b|
(because f has Lipschitz constant 1), it follows that

|δ(t)| ≤ e−t|a|+ (1− e−t)|b| ∀ t.

Therefore (using that y1(t)− y2(t) ≡ b):

∥ξ(t)− η(t)∥∞ = max {|δ(t)|, |b|}
≤ max

{
e−t|a|+ (1− e−t)|b|, |b|

}
≤ max

{
e−tK + (1− e−t)K, |b|

}
= K

where K := max{|a|, |b|} = ∥ξ(0)− η(0)∥∞, which proves
that the dynamics is non-expansive. Observe that all solutions
converge to equilibria, so A is the set of equilibria, If we
pick for example f(y) := e−y2

, this equilibrium set is the
non-convex set x = e−y2

.
Thus our example is non-expansive but A is not convex. One
may ask why the theorem does not apply. Perhaps the system
is non-expansive also with respect to some strictly convex
norm? One can show that this is false, but for simplicity
let’s restrict to any ℓp norm with 1 < p < ∞, and again
use f(y) = e−y2

. Consider the equilibrium m1 = (1, 0) and
the point m2 = (1, 1). Note that the line y = 1 is tangent
to an ℓp norm ball centered at m1 of radius 1. Let B =
{x|∥x − m1∥ = 1}. The line y = 1 can only intersect our
set B at m2 due to the norm being strictly convex. Indeed,
for a point (x1, 1) we have that ∥(x1, 1)− (1, 0)∥ = (|x1 −
1|p+1)1/p ≥ 1 where we have equality iff x1 = 1. Thus for
t > 0 we have that ϕt(m2) cannot be contained in B or its
convex hull, and thus ∥ϕt(m2) − ϕt(m1)∥ > ∥m2 − m1∥.
Thus the system is not non-expansive.

Since A is compact and convex, the vector field f restricted
to A has an equilibrium, by Lemma 1. Without loss of
generality, we can view this fixed point as the origin in Rn, so
from now on we assume that A contains 0 and that f(0) = 0.
Thus also ϕt(0) = 0 for all t.
In the next result, we use Mankiewicz’s Theorem (see for
example [14]). This theorem applies to any isometry g : E →
Y , where E is a nonempty subset of a real normed space X ,
and Y is a real normed space. If either both E and g(E) are
convex bodies (compact and convex with nonempty interior)
or if E is open and connected and g(E) is open, then g can
be uniquely extended to an affine isometry F : X → Y .

Lemma 8. Let V be the linear span of A. There exists a
one-parameter family of affine isometries Ft on V such that
Ft is an extension of ϕt restricted to A.

Proof. Fix any t > 0. We know by Lemma 2 that ϕt is
an isometry on the convex set A. If A = {0} then the
result is trivial, so assume A ̸= {0}. Let {v1, . . . , vm} be
a maximal linearly independent set of vectors in A. Thus
V is the span of {v1, . . . , vm}. Every linear combination
p =

∑m
i=1 λivi with all λi > 0 and

∑m
i=1 λi < 1 belongs

to A (since p = (1 −
∑m

i=1 λi)0 +
∑m

i=1 λivi is in A,
by convexity and because 0 ∈ A). So A has a nonempty
interior in V . It follows that A is a convex body relative
to V . We now apply Mankiewicz’s Theorem with g = ϕt,
E = A, and X = Y = V . Note that g(A) = A because



A is backwards complete, so that g(A) is a convex body as
needed for the theorem. Thus we have an extension to an
affine transformation Ft on V .

As every ϕt vanishes at zero (recall that we assumed this
without loss of generality), so do the mappings Ft from
Lemma 8. Therefore each Ft is a linear map. Since each
Ft is an isometry, Ft is nonsingular, that is, Ft ∈ GLm(R).

Lemma 9. The mappings Ft vary continuously with t.

Proof. Since f is a C1 vector field, the ϕt mappings vary
continuously with t on the compact and convex set A.
Suppose that V (i.e., the span of A) is m dimensional. We
can find m linearly independent vectors x1, x2, ..., xm in A
that span V . Since A is forward and backwards invariant,
for each 1 ≤ i ≤ m and each t, ϕt(xi) ∈ A, and hence
Ft(xi) = ϕt(xi). Thus Ft(xi) varies continuously with t
since ϕt(xi) varies continuously with t. We conclude that the
mapping t → Ft is continuous as a map R → GLm(R).

Lemma 10. We have that Ft = eBt for some linear
transformation B on V .

Proof. Since F0 = I (here I is the identity transformation),
FtFs = Fs+t, and Ft varies continuously in t , the set of
transformations Ft is a one parameter subgroup of GLm(R).
By Theorem 2.14 in [15] we can conclude that there exists
a unique linear map B ⊆ GLm(C) such that Ft = eBt.
Note that since B = d

dtFt|t=0 we in fact must have B ⊆
GLm(R)
The following is a standard property of center manifolds of
linear time-invariant systems (see for example Problem 5 in
Problem Set 9 in [16]); we provide a proof for completeness.

Lemma 11. Suppose a linear system ẋ = Bx satisfies that
its trajectories are bounded and do not converge to 0. Then
the matrix B has only eigenvalues with 0 real part, and it
is diagonalizable.

Proof. Note that if any eigenvalue of B had negative real
part, then we can find a trajectory of the system ẋ = Bx
which converges to 0. If any had positive real part, we could
find a trajectory diverging to infinity.
Note that there exists P ∈ GLm(C) such that B = PNP−1

where N is in Jordan normal form. Note that eNt has
diagonal blocks with t’s on the off diagonal if any of the
blocks are not diagonal matrices. This would imply again
diverging trajectories, thus all the blocks must be diagonal
and so B is diagonalizable.

We will call such linear differential equations conserved
linear equations. A quadratic Lyapunov function for such
systems can be constructed as usual through the solution of
a Lyapunov equation (see e.g. [17]). Again for completeness,
we provide a proof.

Lemma 12. Every conserved linear system has a quadratic
form P such that d

dt (x
⊤Px) = 0.

Proof. Consider a conserved linear system ẋ = Bx. Note
by Lemma 11 we can diagnoalize B with a real matrix L.

In other words, L−1BL is such that it is a skew symmetric
matrix consisting of diagonal blocks of the form[

0 α
−α 0

]
.

Let P = L⊤L. We have that

B⊤L⊤L+ L⊤LB = (L−1BL)⊤L⊤L+ L⊤L(L−1BL)

= L⊤B⊤L+ L⊤BL

= −L⊤BL+ L⊤BL = 0.

Thus d
dt (x

⊤Px) = x⊤(B⊤P + PB)x = 0.

Lemma 13. For a conserved linear system ẋ = Bx, every
point x0 is in its own ω-limit set.

Proof. Assume upon a linear transformation that B is block-
diagonal with blocks that are either 2 by 2 skew symmetric
matrices or 1 by 1 zero matrices. The trajectory of x0 is
thus eBtx0 where eBt consists of 2 by 2 blocks of rotation
matrices on its diagonal of the form.[

cos(αit) − sin(αit)
sin(αit) cos(αit)

]
as well as 1’s in diagonal entries corresponding to zero en-
tries in B. Put the αi terms into a row vector [α1, α2, ..., αl]t
and consider this vector modulo 2π. Divide up the region
[0, 2π]n into boxes of side length at most ϵ. Note that for
any ϵ > 0 and any δ > 0 by the pigeonhole principle we can
always find t1 and t2 such that |t1 − t2| is bounded below
by δ > 0 and that

|[α1, α2, ..., αl]t1 − [α1, α2, ..., αl]t2| < [ϵ, ϵ, ..., ϵ].

(Here the absolute value and comparison are done element-
wise.) Indeed, the set of points {(t1+ δj)[α1, α2, ..., αl]|j ∈
N} (taken modulo 2π) is an infinite set of points in [0, 2π]n

and thus we can find 2 different points in the same box (from
the boxes we have previously divided our region into). These
two points precisely satisfy out inequality.
Thus if t2 > t1 then at time t = t2 − t1 we have that eBt is
close to the identity matrix. This is due to the fact that if all
the αit are close to multiples of 2π, all the 2 by 2 rotation
matrices will be close to being identity matrices. Picking
δi = i and ϵi = 1

i we can always find a corresponding
ti > δi such that eBti → I as ti → ∞. In particular, for
each x0, eBtix0 → x0 as ti → ∞. Thus x0 is in its own
ω-limit set.

Lemma 14. For a conserved linear system ẋ = Bx the
trajectories are homeomorphic to an k-torus (S1)k for some
integer k.

Proof. Via a linear transformation, we can assume that B
consists of 2 by 2 blocks of skew symmetric matrices on
its diagonal, and 0’s elsewhere. Our trajectories are always
of the form {eBtx0|t ≥ 0} for some initial point x0.
Whenever we have two entries of x0 equal to 0, and they
both correspond to the same block, remove this block from
eBt (otherwise, these entries would simply remain 0 for the



entire trajectory). Going forward we consider this reduced
form of eBt.
Let T be the set of matrices which consist of 2 by 2 rotation
matrices on the diagonal, 1’s elsewhere on the diagonal, and
0’s off the diagonal (i.e., the same general structure as eBt),
seen as a Lie subgroup of an appropriate GL(k,R). It is
easy to see that T is a compact, connected, and commutative
Lie group, and thus it is a torus (Theorem 11.2 in [15]).
Note that the closure of G = {eBt|t ∈ R}, call it Ḡ, is a
subgroup (the closure of a subgroup is still a subgroup) of T .
Since Ḡ is a closed subgroup of T , it must be compact and
commutative. It is also a Lie subgroup of T by the Closed
Subgroup Theorem (see Theorem 20.12 in [18]). Since G
is connected so is Ḡ. Thus Ḡ is a compact, connected and
commutative Lie subgroup of T and therefore it must be a
torus itself.
Define L = {eBtx0|t ∈ R}. By Lemma 13 we have that x0

is in ω(x0) and since ω-limit sets are backward and forward
invariant we must also have that L ⊆ ω(x0) and thus since ω-
limit sets are closed sets that L̄ ⊆ ω(x0). Thus since ω(x0) ⊆
L̄ we have that our ω-limit set is in fact precisely L̄.
Thus we can think of Ḡ as acting on x0, and since the
stabilizer is trivial we have L̄ is diffeomorphic to Ḡ (see
Theorem 21.18 in [18]). Thus the ω-limit set of eBtx0 must
also be a torus.
We are now ready to prove our main result:

Theorem 1. Suppose that the dynamical system ẋ = f(x)
is non-expansive for a strictly convex norm ∥.∥ and has
at least one bounded trajectory. Then all the trajectories
are bounded, and their ω-limit sets are that of some fixed
conserved linear system ẋ = Bx. In particular, the ω-limit
sets are homeomoprhic to (S1)k for some integer k.

Proof. By Lemma 8 and Lemma 10 we have that on the set
A our dynamics must be equivalent (up to translation) to that
of a linear system. Since the trajectories are bounded and do
not converge to 0 this linear system must be a conserved
system. Indeed, if any trajectories did converge to 0, this
would contradict that the forward mapping is an isometry
on A. By Lemma 14 we have that all the ω-limit sets are
tori.

C. Nonexpansive polyhedral norms

We provide a self-contained proof that for (real-)analytic
vector fields which are non-expansive with respect to a
norm, we have a stronger convergence result. The following
is essentially Theorem 21 from [10], but certain technical
details were missing in the proof in that paper.

Theorem 2. [10] Suppose we have a system ẋ = f(x) where
f(x) is analytic and has bounded trajectories. Suppose the
system is non-expansive with respect to some polyhedral
norm. Then the solutions of the system converge to the
equilibria set.

Proof. One can show that ∥f(x(t))∥ is nonincreasing along
any trajectory, because (d/dt)f(x(t)) = Jf (x)f(x(t)) and
the logarithmic norm of Jf (x) is nonpositive. It follows

by the LaSalle’s Invariance Principle that every solution
approaches a set Zc := {x0 | ∥f(ϕt(x0))∥ ≡ c} for some
c ≥ 0.
We claim that any such set Zc consists solely of equilibria.
Pick any point x0 ∈ Z and the corresponding trajectory
x(t) = ϕt(x0). By definition of Zc, x(t) ∈ Zc for all t ≥ 0.
We claim that c = 0, i.e. that x(t) ≡ x0, so that x0 is an
equilibrium. Indeed, suppose that c ̸= 0. Then f(x(t)) is
always a point on a norm ball of a constant (nonzero) size.
Thus it must spend a finite time on a face of this ball of
constant size. Suppose that this face has normal vector η.
Then η · f(x(t)) will be a constant value, for a set of times
in a set of positive measure, and so must be a constant value
for all time, by analyticity. This implies that η · f(x(t)) has
this constant value for all t ≥ 0, forcing the velocity vector
f(x(t)) to always point in a certain direction (i.e., along the
direction of η), forcing the trajectory to be unbounded, a
contradiction.

D. Nonexpansive maps on R2

In the special case of R2, we have some stronger results. In
the following, we do not assume the norm on R2 is strictly
convex.

Lemma 15. The only norms preserved by a nontrivial one
parameter family of linear isometries of the form eBt are the
weighted ℓ2 norms.

Proof. To prove this we will show that whatever the norm is,
it must have the same unit norm ball as that of a weighted
ℓ2 norm. Consider all possible bounded trajectories of the
form eBtx0. These correspond to trajectories of the linear
system ẋ = Bx. Note that all the eigenvalues of B must
have 0 real part, otherwise we would have points converging
to 0 or diverging to ∞, contradicting that eBt should be an
isometry for all t.
By Lemma 12 that there exists a matrix P such that
d
dt (x

⊤Px) = 0. Let C be the set x⊤Px = 1. Pick any
x0 ∈ C. Note that for t ≥ 0 we have that eBtx0 traces
out exactly the set C. Since we assume eBt is always an
isometry, we get that all points on C have the same norm
(since scaling does not impact anything, we will assume
the points on C have norm 1). Note that C is exactly the
norm unit ball of our system’s norm (indeed if any other
point x ̸∈ C had norm 1, we could multiply C by a
scalar to conclude x must also have norm different than 1,
a contradiction), but it is also the unit ball of a weighted ℓ2

norm. Since the unit balls of a norm determine the norm, we
have in fact our norm must be a weighted ℓ2 norm.

Note that the previous lemma is not true in Rn for n > 2.
For example, take n = 3 and consider the norm ∥(x, y, z)∥ =√
x2 + y2+ |z|. This norm is preserved by the linear system

ẋ = −y, ẏ = x, ż = 0.

Lemma 16. If a global attractor A contains a limit cycle,
the only norm we can preserve on A is a weighted ℓ2 norm.

Proof. Suppose we have a limit cycle, and let I be the limit
cycle with its interior. Then since ϕt takes I to itself for



all time, so ϕt must be an isometry on I by Lemma 2. It
contains an open set so by Mankiewicz’s Theorem the map
ϕt restricted to the interior of I can be extended to an affine
map Ft. Thus by Lemma 15 the preserved norm must be a
weighted ℓ2 norm.

Lemma 17. If an ω limit set of a point x contains an
equilibrium point p, then ϕt(x) converges to p.

Proof. If p is an equilibrium point in the ω-limit set of a
point x, then for every ϵ > 0 we can find t > 0 such that
∥p − ϕt(x)∥ < ϵ. Since the system under consideration is
non-expansive, we have that ∥p− ϕt(x)∥ < ϵ for all t > T .
Thus the trajectory is simply converging to p.

Lemma 18. If a system is non-expansive for a norm which is
not a weighted ℓ2 norm, then all bounded trajectories must
converge to the equilibria set.

Proof. Suppose the system is non-expansive for a norm
which is not a weighted ℓ2 norm. By Lemma 16 the system
cannot have any limit cycles. By the Poincare-Bendixson
theorem any ω-limit set of a point x that is not a limit cycle
must contain some fixed point p, but by Lemma 17 the point
p is the only fixed point of ω(x) (otherwise ϕt(x) would have
to converge to two different points, which is impossible).
Thus we must converge to the fixed point p.

IV. A NECESSARY AND SUFFICIENT CONDITION FOR
NONEXPANSIVITY

Here we will provide a necessary and sufficient description
of nonexpansivity with respect to a norm. This condition is
connected to the supporting hyperplanes of a unit ball of said
norm. This can be seen as a type of Demidovich condition
for contractivity [19].
Let Bd = {x ∈ Rm|∥x∥ ≤ d}. For all v ∈ Rm let Nv

be the set of all possible normal vectors of hyperplanes that
support B∥v∥ at v and are orientated toward the complement
of B∥v∥. In other words, let Hv be the set of hyperplanes
that support B∥v∥ at v. Then

Nv =

{n ∈ Rn|∃H ∈ Hv(∀h ∈ H[n · (h− v) = 0, n · v ≥ 0])}.

In the following let X = Rm.

Theorem 3. Suppose we have a dynamical system ẋ = f(x)
and a norm ∥.∥ on the state space X of the system. Then the
system is non-expansive iff for all x ∈ X and all v ∈ Rm

then whenever n ∈ Nv we must have

n⊤Jf (x)v ≤ 0.

Proof. Suppose that the system is non-expansive. Then for
all t ≥ 0 we have that ∥ϕt(x)−ϕt(y)∥ ≤ ∥x− y∥. Thus we
must have that for n ∈ Nx−y that

n⊤(ϕt(x)− ϕt(y)) ≤ n⊤(x− y)

or
n⊤((ϕt(x)− x)− (ϕt(y)− y)) ≤ 0.

Note the first inequality is due to the observation that if n is
the normal vector of a supporting hyperplane H of a convex
figure, and for v ∈ H we have n⊤v = c, then for all points
in the convex figure we must have n⊤v ≤ c.
Now we have that ϕt(x)−x = tf(x)+tϵ1(t) where ϵ1(t) →
0 as t → 0, and similarly ϕt(y)− y = tf(y) + tϵ2(t) where
ϵ2(t) → 0 as t → 0. Thus we get

n⊤(tf(x) + tϵ1(t)− (tf(y) + tϵ2(t))

= n⊤(t(f(x)− f(y)) + t(ϵ1(t)− ϵ2(t))) ≤ 0

or
n⊤((f(x)− f(y)) + (ϵ1(t)− ϵ2(t))) ≤ 0.

Let t → 0 we get that n⊤(f(x)−f(y)) ≤ 0. Now we have by
the mean value theorem that for some real number s where
0 ≤ s ≤ 1 we have that

n⊤(f(x)− f(y)) =

∫ 1

0

n⊤(Jf (y + (x− y)t)(x− y))dt

= n⊤(Jf (y + (x− y)s)(x− y)).

Thus also have that

n⊤(f(x)− f(y)) ≤ 0

n⊤(Jf (y + (x− y)s)(x− y) ≤ 0

Let xr = y+(x−y)r, so that x1 = x and xr−y = (x−y)r.
We can divide by r to get the inequality

n⊤(Jf (y + (x− y)rs)(x− y) ≤ 0

Letting r → 0 we get that (x − y)rs → 0 and so we have
that

n⊤Jf (y)(x− y) ≤ 0.

This is the desired condition. Now we will prove the other
direction. Again using the mean value theorem note that

n⊤(f(x)− f(y)) =

∫ 1

0

n⊤(Jf (y + (x− y)t)(x− y))dt

= n⊤(Jf (y + (x− y)s)(x− y)).

Thus we have that

n⊤(f(x)− f(y)) = n⊤(Jf (y + (x− y)s)(x− y)) ≤ 0.

The last inequality is by assumption. Thus n⊤(ẋ − ẏ) =
n⊤(f(x) − f(y)) ≤ 0. From this it follows that the vector
x(t)− y(t) is not moving outside of the ball B∥x−y∥ and so
the system is non-expansive.

A. Examples

1) Systems non-expansive with respect to the ℓ4 norm: Using
Theorem 3 we can show that there exists systems with non-
expansive ℓp norms for p ̸= 1, 2,∞. For the ℓ4 norm in R2

the condition from Theorem 3 is that

[u3, v3]Jf (x)

[
u
v

]
≤ 0.



Note that

−(u2 + 2cuv − 2c2v2)2 = −u4 − 4cu3v + 8c3uv3 − 4c4v4

= [u3, v3]

[
−1 −4c
8c3 −4c4

] [
u
v

]
≤ 0.

This implies that for the matrix

Ac =

[
−1 −4c
8c3 −4c4

]
.

that the linear system ẋ = Acx in non-expansive with respect
to the ℓ4 norm for all real numbers c. Note also that for
u = (1 +

√
3)cv we have that

[u3, v3]

[
−1 −4c
8c3 −4c4

] [
u
v

]
= 0.

2) A globally convergent Hurwitz everywhere system which
is not contractive with respect to any norm: We can also
show that in fact there is a Hurwitz everywhere system that is
globally convergent which is not non-expansive with respect
to any norm. Here by globally convergent we mean all tra-
jectories converge to the origin, and by Hurwitz everywhere
we mean that the Jacobian at each point is such that all
its eigenvalues have strictly negative real part. Consider the
following system:

ẋ = −x ẏ = −(x2 + 1)y.

Now by Theorem 3 for the system to be non-expansive with
respect to a norm we must have that n⊤Jf (x, y)v ≤ 0 as in
the notation of the theorem. Note that for the system under
consideration:

Jf (x, y) =

[
−1 0

−2xy −(x2 + 1)

]
.

For v with nonzero x coordinate we have that Jf (x, y)v
contains every vector with a negative x coordinate. This
forces n to be the vector [−1, 0] or some positive multiple of
this vector. There does not exist a bounded symmetric convex
shape centered at the origin in R2 such that any supporting
hyperplanes at points with nonzero x coordinate have normal
[−1, 0] (the only such shape with this property would be two
parallel lines).

V. CONCLUSIONS

We characterized the ω-limit sets of (generally nonlinear)
non-expansive dynamical systems with respect to strictly
convex norms as attractors of linear systems. A common
theme throughout our paper is that the isometry group of a
norm is closely tied to the behavior of dynamical systems
non-expansive with respect to the norm. We also provided
a complete description of non-expansive systems in R2, and
presented a Demidovich type condition which we used to
provide some examples of non-expansive systems. An open
question remains regarding Theorem 1 regarding a relaxation
to non-strictly convex norms.

Open Problem. Does Theorem 1 hold if the qualifier
“strictly convex” is removed?

REFERENCES

[1] W. Lohmiller and J.-J. E. Slotine, “Nonlinear process control using
contraction theory,” AIChe Journal, vol. 46, pp. 588–596, 2000.

[2] Z. Aminzare and E. D. Sontag, “Contraction methods for nonlinear
systems: A brief introduction and some open problems,” in 53rd IEEE
Conference on Decision and Control, 2014, pp. 3835–3847.

[3] E. D. Sontag, “Contractive systems with inputs,” in Perspectives
in Mathematical System Theory, Control, and Signal Processing: A
Festschrift in Honor of Yutaka Yamamoto on the Occasion of his
60th Birthday, J. C. Willems, S. Hara, Y. Ohta, and H. Fujioka, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 217–228.
[Online]. Available: https://doi.org/10.1007/978-3-540-93918-4 20

[4] F. Bullo, Contraction Theory for Dynamical Systems, 1.1 ed. Kindle
Direct Publishing, 2023. [Online]. Available: https://fbullo.github.io/
ctds

[5] F. Forni and R. Sepulchre, “A differential lyapunov framework for con-
traction analysis,” IEEE Transactions on Automatic Control, vol. 59,
no. 3, pp. 614–628, 2014.

[6] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Contraction theory
for nonlinear stability analysis and learning-based control: A tutorial
overview,” Annual Reviews in Control, vol. 52, pp. 135–169, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1367578821000766

[7] P. Cisneros-Velarde, S. Jafarpour, and F. Bullo, “Contraction theory
for dynamical systems on Hilbert spaces,” IEEE Transactions on
Automatic Control, vol. 67, no. 12, pp. 6710–6715, 2022.

[8] S. Jafarpour, A. Davydov, and F. Bullo, “Non-Euclidean contraction
theory for monotone and positive systems,” IEEE Transactions on
Automatic Control, vol. 68, no. 9, pp. 5653–5660, 2023.

[9] J. W. Simpson-Porco and F. Bullo, “Contraction theory on Riemannian
manifolds,” Systems & Control Letters, vol. 65, pp. 74–80, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S016769111400005X

[10] S. Jafarpour, P. Cisneros-Velarde, and F. Bullo, “Weak and semi-
contraction for network systems and diffusively coupled oscillators,”
IEEE Transactions on Automatic Control, vol. 67, no. 3, pp. 1285–
1300, 2022.

[11] S. Jafarpour and S. Coogan, “Monotonicity and contraction on
polyhedral cones,” arXiv preprint arXiv:2210.11576, 2023. [Online].
Available: https://arxiv.org/abs/2210.11576

[12] H. Freudenthal and W. Hurewicz, “Dehnungen, verkürzungen,
isometrien,” Fundamenta Mathematicae, vol. 26, no. 1, pp. 120–122,
1936. [Online]. Available: http://eudml.org/doc/212824

[13] G. G. Ding and Y. M. Ma, “How to recognize nonexpansive mappings
and isometric mappings,” Acta Mathematica Sinica, English Series,
vol. 27, no. 10, pp. 1959–1966, Oct 2011. [Online]. Available:
https://doi.org/10.1007/s10114-011-9470-7

[14] S.-M. Jung, “Extension of isometries in real Hilbert spaces,”
Open Mathematics, vol. 20, no. 1, pp. 1353–1379, 2022. [Online].
Available: https://doi.org/10.1515/math-2022-0518

[15] B. C. Hall, Lie Groups, Lie Algebras, and Representations:
An Elementary Introduction, ser. Graduate Texts in Mathematics.
Springer, 2003. [Online]. Available: https://books.google.com/books?
id=m1VQi8HmEwcC

[16] L. Perko, Differential Equations and Dynamical Systems, Third Edi-
tion, ser. Texts in Applied Mathematics. New York: Springer, 2002,
vol. 7.

[17] E. Sontag, Mathematical Control Theory. Deterministic Finite-
Dimensional Systems, 2nd ed., ser. Texts in Applied Mathematics.
New York: Springer-Verlag, 1998, vol. 6.

[18] J. Lee, Introduction to Smooth Manifolds, ser. Graduate Texts
in Mathematics. Springer New York, 2012. [Online]. Available:
https://books.google.com/books?id=xygVcKGPsNwC

[19] A. Davydov, S. Jafarpour, and F. Bullo, “Non-Euclidean contraction
theory for robust nonlinear stability,” IEEE Transactions on Automatic
Control, vol. 67, no. 12, pp. 6667–6681, 2022.


