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Abstract— Motivated by the growing use of Artificial in-
telligence (AI) tools in control design, this paper takes steps
toward bridging results from Direct Gradient methods for the
Linear Quadratic Regulator (LQR), and neural networks. More
specifically, it looks into the case where one wants to find a
Linear Feed-Forward Neural Network (LFFNN) feedback that
minimizes the LQR cost. This work develops gradient formulas
that can be used to implement the training of such networks
and derives an important conservation law of the system.
This conservation law is then leveraged to prove the global
convergence of solutions and invariance of the set of stabilizing
networks under the training dynamics. These theoretical results
are followed by an extensive analysis of the simplest version of
the problem (the “scalar case”) and by numerical evidence of
faster convergence of the training of general LFFNNs when
compared to traditional direct gradient methods.

I. INTRODUCTION

Artificial Intelligence (AI) and Machine Learning (ML)
tools are being increasingly used in control design [1]–
[7], particularly in data-driven applications, where a plant
model may not be available [8], [9]. In such scenarios,
an “oracle” or “digital twin” might be queried to estimate
the cost associated with a specific control law implemented
by a candidate feedforward network, as illustrated in Fig.
1. This network has adjustable parameters (or “weights”),
which are updated through the gradient of the estimated
cost, typically employing gradient descent or some other
numerical optimization method.

Understanding the convergence of such learning tech-
niques is challenging because both plant and controller are
typically nonlinear. To start studying this problem, this paper
proposes the analysis of Linear Feed-Forward Neural Net-
works (LFFNN) – that is feed-forward networks with linear
activation functions – to solve Linear Quadratic Regulator
(LQR) problems. At first glance, this might seem like an
uninteresting problem. However, to obtain LQR solutions via
Riccati equations one needs to know the system matrices,
which are not available in data-driven control problem for-
mulations, such as the one depicted in Fig. 1. In contrast,
gradient methods can be used for unknown or uncertain
plants, as long as estimates of the gradient can be obtained.

The analysis of direct gradient methods for LQR is an area
of active research, made difficult because of a non-convex
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Fig. 1. System overview of the control design for an unknown plant
with an uncertain oracle. The control designer attempts to find a
feedback matrix that minimizes the output of the oracle, which in
turn provides a (possibly noisy) estimate of the cost function every
time it receives a candidate feedback matrix.

optimization landscape, and traces its origins to pioneering
work by Levine and Athans starting in the late 1960s [10].
Recent publications have established global convergence
properties [8], [11] as well as input-to-state stability (ISS)
properties [9], [12] when gradients are subject to possible
errors (seen as input disturbances).

This paper deals with LFFNNs, in which the presence
of hidden layers implies an overparameterization of the pa-
rameters’ expression, which changes the gradient dynamics.
Mathematically, feedback implemented by a feedforward
neural network (FFNN) is written in an overparametrized
form, as a composition K = KN ◦ θ ◦ KN−1 ◦ . . . θ ◦ K1,
where the linear operator Ki represents the weights in the
ith layer of the network and θ is a diagonal operator (acti-
vation function acting on each coordinate). Recent literature
indicates that even the simpler problem of linear activations
(θ = identity, so K = KNKN−1 . . .K1 resulting in linear
FFNN’s, or LFFNN) can have properties that make this for-
mulation interesting, besides being a useful intermediary step
for understanding deep learning [13]–[24]. The results known
for direct gradient methods do not immediately generalize
to LFFNNs, prompting the need to study the convergence
of gradient training done on the full set of parameters. Also
closely related to this paper, in [24] the authors studied how
regularization can affect the critical points of an optimization
solved through LFFNNs.

For the context of solving a static supervised learning
problem, not only have powerful “almost everywhere” con-
vergence results been obtained [13]–[19], but an associated
ISS problem was studied as well [20], and, perhaps surpris-
ingly, the optimization on the individual matrices Ki can
result is much faster convergence than optimization on a
single matrix K [21]–[23].

This paper investigates properties that can be derived
for the gradient training of LFFNNs for solving the LQR
problem. An advantage of this approach is that the optimal
solution to the LQR problem is known to be a linear
transformation, and as such no generality is lost by assuming



linear activation functions. Explicit formulas for the neces-
sary gradients are provided and used to derive an important
conservation law of the dynamics. This conservation law is
leveraged to prove global convergence of all solutions to
critical points of the gradient dynamics, and invariance of
the set of stabilizing LFFNNs along solutions. The simplest
possible example, named the “scalar case,” is then explored
to illustrate the intuition behind overparameterization. Fi-
nally, simulations show that the speed of convergence of
the gradient training can outperform more traditional direct
gradient/gradient flow methods used for LQR, depending
on the value of the initialization of the parameters. These
results indicate both the theoretical value of studying such a
problem, and the practical value of LFFNNs as design tools
for data-driven control applications. Almost all proofs are
omitted in this paper due to space limitations but can be
viewed in the extended version [25].

II. THEORETICAL BACKGROUND

In this paper, let R and R+ be the set of real numbers
and nonnegative real numbers, respectively, and I be the set
of imaginary numbers. The absolute value and norms are
given by | · | and ∥ · ∥s respectively, with s = ∞ being the
infinity norm, s = 2 being the two norm (vector or matrix)
and s = F being the Frobenius norm. Unless explicitly said
otherwise, capital letters represent matrices and lower-case
ones represent vectors. The identity matrix is represented by
I , with the dimension clear from the context.

A. Direct Gradient Formulations for LQR

Consider a linear system ẋ = Ax + Bu with y = Cx,
where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Ro×n are the system
matrices. The objective is to determine an output feedback
u = Ky that minimizes

J(K) = Ex0∈X0

[∫ ∞

0

x(t)⊤Qx(t) + u(t)⊤Ru(t) dt

]
,

with given positive definite cost matrices R ∈ Rm×m and
Q ∈ Rn×n, and for all solutions initialized in a set X0 ⊆ Rn.

In [26], the authors provide, through Theorem 3.2, the
gradient of the cost with respect to the feedback matrix
K as ∇KJ(K) = −2(B⊤PK + RKC)LKC⊤, where, for
any K such that A + BKC is Hurwitz, PK and LK are
the unique positive definite solutions of PK(A + BKC) +
(A + BKC)⊤PK + C⊤K⊤RKC + Q = 0 and LK(A +
BKC)⊤ + (A + BKC)LK + Σ0 = 0, respectively. The
matrix Σ0 = Ex0∈X0 [x0x

⊤
0 ] depends on the distribution of

initial conditions X0, being equal to the identity if the system
to be stabilized is initialized with any state in the unit sphere,
or being equal to the covariance matrix if it is initialized from
a zero-mean Gaussian distribution.

Despite its reliance on the knowledge of the system
matrices, the gradient ∇KJ(K) holds great value for analy-
sis, as demonstrated in [8], [11], where it forms the basis
for theoretical guarantees regarding convergence rate and
accuracy in model-free scenarios. To expand on this liter-
ature, this work explores the substitution of state feedback
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Fig. 2. Graphical representation of a Linear Feed-forward Neural
Network with input layer y ∈ Ro, hidden layers zi ∈ Rκi and
output layer u ∈ Rm. The computation of the network is done for
each layer as zi = Kizi−1, with z0 = y and zN = u, where
the matrices Ki represent, in the figure, the presence and weight of
edges between neurons of layer i−1 and layer i. The resulting input-
output expression for the LFFNN then becomes u = KN . . .K1y.

with a linear neural network. The goal is to investigate
potential advantages in solving the original problem without
compromising convergence guarantees.

B. Neural Networks - Properties and Formulation

The optimization landscape for the gradient flow for neural
networks is usually studied in terms of least-square/linear re-
gression problems, stated as follows: let Y = [y1, y2, . . . , yk]
and U = [u1, u2, . . . , uk] be the column concatenation of
(possibly noisy) k input-output pairs sampled from an un-
known function K̄ one wants to approximate using a neural
network. That is, for every i between 1 and k, ui = K̄(yi).

For some search space of neural networks K, defined as
appropriate to the problem, the optimal neural network K∗

is the one in K that minimizes J(K) = ∥U−K(Y )∥, where
K(Y ) = [K(y1),K(y2), . . . ,K(yk)], and for some norm
∥ · ∥. In the specific case of a LFFNN, and being Ki ∈
Rκi−1×κi the i-th layer parameter matrices, the function to be
minimized becomes J(K1, . . . ,KN ) = ∥U −KN . . .K1Y ∥,
and the overall structure of a linear FFNN is illustrated in
Fig. 2.

For the problem just described, and under some reasonable
assumptions on the rank of Y and U , and on the dimensions
of the Kis (see [13], and Assumptions 1 and 2 in [17] and
references therein, or a previous work from the authors [20]),
the following can be summarized from the literature about
the optimization landscape of this problem [13], [15]–[17]:

Proposition 1: Consider a Linear Regression problem
solved with a linear FFNN with N layers and trained through
gradient flow. Assume U and Y are full column rank and that
all hidden layers are wider than the number of inputs and
outputs, then:

• the problem is non-convex and non-concave;
• all local minima are global minima;
• all non-minima critical points are saddles;
• in the special case N = 2, all non-minima critical points

are strict saddles (i.e. with at least one strictly unstable
direction associated with it);

• for the problem initialized at any initial condition, the
solution always exists and converges to a critical point
of the dynamics;

• if N = 2, the solutions converge to a global optimum
for all initializations but a set of measure zero.



Furthermore, other works in the literature establish useful
properties of overparameterized linear neural networks, when
compared to equivalent non-overparameterized formulations.
In [21]–[23] the authors study the speed of convergence for
the gradient flow in overparameterized linear neural networks
solving linear regressions, showing that depending on the
initialization of the algorithm, the convergence rate can be
drastically increased.

In [27] the authors study the occurrence of ”benign
overfitting“ in a similar setup, which is the phenomenon in
which a much higher number of regression parameters leads
to increased accuracy for the same input-output dataset.

In [20], a previous work of the authors of this paper, we
provide some insights on the loss of robustness in training
overparameterized neural networks, and show how judicious
restrictions on the set of initializations might circumvent this
problem.

The literature is rich with properties for overparameterized
neural networks that could be useful if held in the context
of feedback control design. Motivated by these results, the
next section looks at how one can extend these important
results for Linear Quadratic cost functions, and consequently,
feedback control design.

III. FEEDBACK CONTROL THROUGH LFFNNS

Let K = (K1,K2, . . . ,KN ) be a linear FFNN with
N − 1 hidden layers, an input layer, and an output layer.
Let K1,K2, . . . ,KN be the weight matrices of each layer
with K1 ∈ Ro×κ1 , K2 ∈ Rκ1×κ2 , and so forth, with
KN ∈ RκN−1×m, where κi ∈ R+ is the dimension of the i-
th hidden layer. For an input y ∈ Ro of the FFNN, its output
u ∈ Rm is given by u = K(y) = KNKN−1 · · ·K2K1y, and
its structure is as depicted in Fig. 2.

By choosing K as the output feedback law, the closed-loop
dynamics of the LTI system becomes ẋ = Ax+BK(Cx) =
(A+BKN · · ·K1C)x, and the LQ cost becomes

J(K) = Ex0∈X0

[∫ ∞

0

x(t)⊤Qx(t) + u(t)⊤Ru(t) dt

]
= trace(PKΣ0), (1)

where, for a given K, PK is the unique solution of

PK(A+BKN . . .K1C) + (A+BKN . . .K1C)⊤PK

+ (KN . . .K1C)⊤RKN . . .K1C +Q = 0. (2)

With this consider:
Definition 1: Let K be a linear FFNN. Define K :=

{K | (A+BKN · · ·K1C) is Hurwitz} and let R and Q be
given positive definite matrices. Solving the LQR problem
using LFFNNs consists in finding a K∗ ∈ K that solves

min
K ∈ K

J(K)

s.t. (2).
A Gradient Flow training for the LQR problem with

LFFNNs can be obtained, for each i = 1, 2, . . . , N and any
fixed “learning rate” η > 0, by selecting any K0 = K|t=0 ∈

K and imposing the following dynamics for the parameter
matrices Ki that compose K:

K̇i = −η
∂J

∂Ki
. (3)

It is evident that an equilibrium of the Gradient Flow
dynamics is not necessarily the global optimum of the
problem, and a better understanding of the landscape of the
problem is necessary before one can discuss the optimality
of an obtained solution. Nonetheless, K̇i = 0 is a necessary
condition for global optimality, which makes the equilibria
of (3) natural candidates for the optimal solution. Moving
forward in this paper it is assumed that η = 1, although
future works might want to consider how changing the value
of η affects the convergence rate of the gradient flow.

Regarding the computation of the gradients of J , consider
the following theorem:

Theorem 1: Let Bi := BKN . . .Ki+1 and Ri :=
K⊤

i+1 . . .K
⊤
NRKN . . .Ki+1 for i ∈ {1, . . . , N − 1}, Ci :=

Ki−1 . . .K1C for i ∈ {2, . . . , N}, BN := B, C1 := C, and
RN := R. Then

∇Ki
J = 2[B⊤

i PK +RiKiCi]LKC⊤
i , (4)

where PK is the solution of (2), LK is the solution of

LK[A+BKN . . .K1C]⊤+[A+BKN . . .K1C]LK+Σ0 = 0,
(5)

and Σ0 relates to the distribution of initial conditions, being
equal to the covariance matrix if the initialization is random
Gaussian with zero mean, or equal to the identity for random
points at the unit sphere.

Remark 1: Notice that both Lyapunov equations (2) and
(5) need only to be computed once for computing the
gradient for all i, meaning that performing the feedback
through a neural network incurs no large gains in complexity
compared to solving the LQR problem via gradient flow.

Moving forward, it is assumed full state feedback for the
system (C = I) and initializations in the unit sphere (Σ0 =
I). The next section looks at what can be said regarding
convergence guarantees for the proposed problem.

A. A Conservation Law for LQR with LFFNNs
Notice that, relative to the weight matrix of each hidden

layer, the derivative of the parameter matrices given by (4)
follow an iterative structure that allows the characterization
of invariant quantities of the solution in a very similar form
as the ones characterized for linear regressions and LFFNNs.
This property is stated in the following theorem:

Theorem 2: For a gradient flow dynamics (3) used for
finding the LFFNN that minimizes the Linear Quadratic cost
(1), and for any i from 1 to N − 1, the following quantity
is invariant along any trajectory:

KiK
⊤
i −K⊤

i+1Ki+1 = (KiK
⊤
i −K⊤

i+1Ki+1)t=0 := Ci, (6)

where Ci are constant matrices of appropriate dimensions.
Notice that a similar invariance property is essential to

many of the properties of the gradient flow for linear regres-
sions and linear neural networks, as can be seen from Lemma



2.3 in [17], Lemma 1 in [21], Lemma 2.1 of [14], Definition
1 of [18], and others. The fact that such property also holds
for the more general Linear Quadratic cost motivates the
search of other properties of the solutions also for this case.

With this, the following result regarding the global con-
vergence of training for LFFNN in the context of LQR can
be stated.

Theorem 3: Any gradient flow solution initialized in K
exists and remains in K for all time, and converges to a
critical point of the gradient flow dynamics.

Notice that the assumption of a stabilizing initialization for
the feedback gain is standard and necessary in the literature
of gradient methods for LQR.

This result not only guarantees invariance of the set
of stabilizing neural networks and global convergence of
solutions but also demonstrates how the invariance obtained
in Theorem 2 can be used to extend results from the literature
of neural networks for linear regressions to the context of
neural networks for feedback design.

However, Theorem 3 does not provide any guarantees re-
garding convergence to the target set (solution of the original,
non-overparametrized problem). More can be said regarding
the optimality of the solution by leveraging some results on
convergence of general nonlinear systems. Consider a general
differential equation

ẋ = f(x) (7)

evolving on an open subset X ⊆ Rn. We assume that f :
X → Rn is continuously differentiable. The solution x(t) =
ϕ(t, ξ) of (7) with initial state ξ ∈ X is defined (and in X)
on a maximal interval t ∈ (T min

ξ , T max
ξ ), where −∞ ≤ T min

ξ <
0 < T max

ξ ≤ +∞. The n× n Jacobian matrix of f evaluated
at a point x ∈ X is denoted by Jf (x).

For any subset S ⊆ X define the finite-time domain of
attraction DF(S) of S as the set of all ξ ∈ X such that
T max
ξ = +∞ and there is some τξ ≥ 0 such that ϕ(t, ξ) ∈ S

for all t ≥ τξ.
We say that x̄ ∈ X is a strict saddle equilibrium of (7) if
1) f(x̄) = 0 and
2) Jf (x̄) has at least one eigenvalue with positive real

part and at least one eigenvalue with non-positive real
part.

The following theorem and corollary generalize results
for discrete-time gradient iterations that were given in [28],
which in turn generalized a result from [29] that restricted
to discrete sets of strict saddles.

Theorem 4: Suppose that x̄ ∈ X is a strict saddle equilib-
rium of (7). Then there exists an open neighborhood B ⊆ X
of x̄ such that DF(B) has Lebesgue measure zero.

Corollary 1: Suppose that E ⊆ X is a set consisting of
strict saddle equilibria of (7). Then the set CE of points ξ ∈ X
whose trajectories converge to points in E has measure zero.

Therefore, if one were to find conditions that guarantee
that the sub-optimal critical points are strict saddles, one
could obtain almost everywhere convergence guarantees. We
present the proofs of Theorem 4 and Corollary 1 in the
appendix. In the full version of this paper [25] we follow

up on a sufficient condition for which our problem satisfies
the assumptions in Theorem 4.

The next section explores the simplest “scalar” version
of the problem to provide some intuition on the effects of
LFFNN on the training of optimal control feedback.

IV. A SIMPLE EXAMPLE

To provide some intuition behind the behavior of the pa-
rameters under training, in this section the simplest possible
case is studied. Assume N = 2, o = n = m = 1, and
κ := κ1 = 1. The case where the parameters take these
values is referred to as the “scalar case.”

For the scalar case, we consider a linear system with A ∈
R, B ∈ R, C ∈ R, x, u, y : R+ → R. Without loss of
generality assume B = C = 1 and A = a. Furthermore,
assume the scalar weights for the cost (1) are Q = q > 0
and R = r > 0 and the parameters for optimization are also
written as K1 = k1 and K2 = k2. Assuming a feedback of
the form u = k2k1x, with a+ k2k1 < 0 results in

J(k1, k2) = Ex0∈X0

[∫ ∞

0

x(t)2q + u(t)2rdt

]
= − (q + k22k

2
1r)

2(a+ k2k1)
.

Taking the gradient with respect to k1 and k2 gives

∇k1
J(k1, k2) = −rk22k

2
1 + 2ark2k1 − q

2(a+ k2k1)2
k2 (8)

= f(k1, k2)k2

∇k2
J(k1, k2) = f(k1, k2)k1, (9)

which, in turn, results in k̇1 = −f(k1, k2)k2, and k̇2 =
−f(k1, k2)k1.

Notice that, similar to the observation made in [20] for
the scalar case in the linear regression, the scalar dynamics
of this problem is a simple nonlinear reparameterization of
linear dynamics. This means that, inside the set where a +
k2k1 < 0, the phase plane should be that of a saddle, with an
inversion in the direction of the flow whenever f(k1, k2) < 0
and an extra equilibrium set given by f(k1, k2) = 0. This
can be observed numerically in the plot given by Fig. 3.

The new equilibrium set given by f(k1, k2) = 0 can be
studied explicitly. This condition is satisfied for any (k1, k2)
that solves r(k2k1)

2 + 2ark2k1 − q = 0 and maintains the
assumption that a + k1k2 < 0. The only viable solution is
k2k1 = −a −

√
a2 + q/r = k∗−, which coincides with the

optimal LQR solution for the scalar system. Furthermore,
notice that f(k1, k2) > 0 for all k2k1 > k∗ that are
such that a + k2k1 < 0, since the positive root k∗+ =

−a +
√
a2 + q/r > 0 is such that a + k∗+ > 0, and the

concavity of the parabola is negative. Next in this analysis,
consider the following proposition:

Proposition 2: Let ΦJ(t, (k1, k2)) be the solution of the
cost function for the scalar case initialized at (k1, k2). For
two initializations at (k̃1, k̃2) and (k̄1, k̄2) respectively such
that k̃1 ̸= k̃2 and k̄1 ̸= k̄2, that J(k̃1, k̃2) = J(k̄1, k̄2), and
that |c̃| = |k̃21 − k̃22| > |k̄21 − k̄22| = |c̄| > 0, then for all time



Fig. 3. Phase Plane for the dynamics of training for the scalar case
described in Section IV, drawn for a stable A. The blue arrows
depict the vector field at different points of the state space. The
black hyperbolas are the new equilibria introduced by the condition
f(k1, k2) = 0, with f(·) as in (8) and (9). The red hyperbolas are
the borders of the set of (k1, k2) such that a + k2k1 < 0, that
is, such that the closed loop is stable. Note that the vector field is
undefined outside this set since the cost function is undefined for
closed-loop unstable systems.

t > 0, ΦJ(t, (k̃1, k̃2)) ≤ ΦJ(t, (k̄1, k̄2)). In other words,
the cost converges faster to the minimum value for solutions
initialized with a larger imbalance |c|.

Still in regards to the effects of imbalance, one can notice
graphically from Fig. 3 that as c increases, the associated
equilibrium gets closer to the border of the set of stabilizing
controllers, i.e. the red and black hyperbolas meet at infinity.
That is, let δK be the border of K (i.e. the red hyperbolas),
(k1, k2) be such that k2k1 = k∗, and k21 − k22 = c, then as
c → ∞, dist((k1, k2), δK) → 0. This can be easily shown
algebraically by computing the limits of each hyperbola at
infinity and seeing that they indeed match.

This does not mean, however, that any disturbance during
the training could take the feedback matrix to instability.
In fact, from (8) and (9) note that as (k1, k2) → δK,
|f(k1, k2)| → ∞, with its direction being away from
the border. This means that only a disturbance of infinite
magnitude on the training dynamics could take a solution
initialized on the set of stable closed loops into the set of
unstable ones. One can even prove the following robustness
result regarding the training of FFNNs for LQR for the scalar
case:

Proposition 3: For the scalar case, if the solutions are
initialized in K and are such that |k1 − k2|t=0 > α, α ∈
(0, 2

√
|k∗|) if a < 0 or α ∈ (2

√
a, 2

√
|k∗|) if a > 0, and

if the dynamics are disturbed as k̇1 = −∇k1
J + u, and

k̇2 = −∇k2J + v, where u, v : R+ → R, then as long as

∥u− v∥∞ ≤ −α
rα4 − 8arα2 − 16q

2(−α2 + 4a)2
, (10)

where ∥ · ∥∞ is the infinity norm of the function, and the

training dynamics is ISS.
Remark 2: To see that the bound (10) is not empty,

consider the polynomial P(α) = −α(rα4 − 8arα2 − 16q)
taken from the numerator of the r.h.s. of the equation. Its

five roots are α1,2 = ±2
√

a+
√
a2 + q/r ∈ R, α3,4 =

±2i
√
−a+

√
a2 + q/r ∈ I and α0 = 0 ∈ R.

The interval of interest for the analysis is inside (some-
times equal to) the interval between α = 0, where the line
|k1 − k2| = 0 contains the point k1 = k2 = 0 which is a
spurious equilibrium of the system, and α = 2

√
|k∗−| = α1,

where the line |k1 − k2| = 2
√

|k∗−| contains the point k1 =
−k2 =

√
|k∗−| which is part of the target equilibrium set

of the system. In other words, α > 0 guarantees that the set
|k1−k2| > α does not contain the spurious equilibrium at the
origin, and α < 2

√
|k∗−| guarantees that the set |k1−k2| > α

contains the entirety of the target set k2k1 = k∗−. These two
lines are indicated in Fig. 3 by the green and blue lines,
respectively.

To evaluate the sign of P(α) between α0 and α1, evaluate
its derivative at α0: P ′(α0) = −(rα4 − 8arα2 − 16q) −
α(4rα3−16arα) = 16q > 0. Therefore, for α ∈ (α0, α1) =
(0, 2

√
|k∗−|), P(α) > 0 which means that the bound ∥u −

v∥∞ < B(α) is not empty has a maximum value inside
(0, 2

√
|k∗−|).

Through this simple example, one can see how interesting
and rich the problem discussed in this paper can be, as well
as capture some of its intuition in a simpler context. The
next section investigates numerically whether the increased
speed of convergence, proven for the scalar case here, might
still hold for the general problem.

V. NUMERICAL RESULTS ON THE SPEED OF
CONVERGENCE

This section investigates numerically how the use of
LFFNNs for solving the LQR problem can affect the speed
of convergence of training when compared to traditional
gradient methods for LQR. This analysis is similar in
principle to the discussion held in [21]–[23], where it was
shown and proved that, in the context of linear regressions,
an overparameterized formulation might converge to the
optimum much quicker than a non-overparameterized one,
depending on the initialization of the system.

The simulations are performed for a random stable lin-
ear system and find the optimal feedback matrix using an
arbitrarily wide, single hidden-layer linear neural network
structure, initialized with parameters with varying levels of
“imbalance.” The results are shown in Fig. 4 together with
the convergence for the simple gradient LQR, without using
linear neural networks.

The experiments in Fig. 4 first use the system matrices
to compute the optimal LQR matrix K∗, then computes an
SVD K∗ = ΨΣΦ⊤, generates a random k × k orthogonal
matrix Γ, and defines the initialization K2 = µΨΣ1/2Γ⊤

and K1 = (1/µ)ΓΣ1/2Φ⊤, where µ ≥ 1 is the level of
imbalance.



Fig. 4. Simulation results for training a LFFNN with a single wide
hidden layer (blue gradient) and for a standard gradient dynamics
(red) for LQR. Notice that the convergence of the LFFNN to the
optimal value of the cost function J(K) can be quicker or slower
depending on the “imbalance” µ of the initialization. In the graph,
µ is varied logarithmically from 1 (light blue) to 100 (dark blue).
This experiment reproduces, for Linear Quadratic cost functions,
the results presented in [23] for linear regression.

Evidently, if one had access to the value of the optimal
feedback matrix K∗, the training loses its purpose, however,
this simulation serves as a demonstration of regions of
the state space where the convergence is much faster or
slower than the non-overparameterized case. Furthermore,
those regions are defined by the magnitude of C, defined
in (6), which is independent of K∗.

The simulation also presents a non-overparametrized gra-
dient flow convergence for the same problem and initializa-
tion (red), illustrating that the imbalance can both accelerate
and decelerate convergence, depending on its value.

VI. CONCLUSIONS

This paper investigates the use of Linear Feed-Forward
Neural Networks (LFFNNs) for training an optimal LQR
feedback. The theoretical exploration conducted yielded sev-
eral important results, as summarized below.

In Theorem 1, the explicit computation of the gradient of
the Linear Quadratic (LQ) cost as a function of the parameter
matrix of each layer of the linear neural network is given.
Building upon this, Theorem 2 establishes a crucial conser-
vation law along the solutions of the gradient flow. Lever-
aging this property, Theorem 3 proves global convergence
of solutions to critical points of the gradient dynamics. This
guarantees the existence and boundedness of all solutions
initialized in the set of LFFNNs that stabilize the closed-
loop system in question, which is also shown to be invariant
under gradient flow. Then the “scalar case” is studied. This
simplest case is thoroughly explored to illustrate and provide
the intuition behind the effects of overparameterization on

the training dynamics of the parameters as well as indicate
the usefulness of the problem.

Finally, this paper provides numerical evidence that other
properties of linear neural networks for linear regression can
be extended to the linear neural networks for the LQR prob-
lem. Specifically, it was observed that initializing training
with a high-norm value to the invariants, defined in Theorem
2, potentially improves convergence rates when compared
to the gradient LQR case, despite the increased number of
parameters.

The simulations presented, alongside Theorem 3, provide
evidence of how the invariance condition established in
Theorem 2 represents an initial step in formalizing the-
oretical guarantees from linear neural network theory for
linear regression literature to the LQR case. Future directions
for research involve a deeper analysis of critical points in
the gradient dynamics, and characterizing the optimization
landscape. One can also be interested in investigating almost
everywhere convergence to the optimum, particularly in the
single hidden layer case. Additionally, it is possible to ex-
plore how the advantageous properties of faster convergence
and increased accuracy inherent in overparameterized neural
networks can benefit practical applications of LFFNNs to
LQR problems.

APPENDIX
Proof of Theorem 4

Pick any equilibrium point x̄ ∈ X. Next modify the vector
field f to a vector field g so that g coincides with f on
an open neighborhood of U of x̄ and g vanishes outside a
compact set K ⊆ X. Since g has compact support, solutions
of ẋ = g(x) are defined for all t ∈ R, and the map G :
x 7→ γ(1, x) (time-1 map for g, where γ is the flow of g)
is a C1 diffeomorphism. Since γ(1, x̄) = x̄, it follows that
G(x̄) = x̄, and since G is a diffeomorphism, there is some
neighborhood V of x̄ in which G = F , where F is the time-
1 map for f . The Center-Stable Manifold Theorem as, for
example, stated in [30], Theorem III.7, applied G restricted
to V , gives the existence of an open subset B of V and a
local center stable manifold W of dimension equal to the
number of eigenvalues with nonpositive real part, with the
property that for any x ∈ B such that Gℓ(x) ∈ V for all
ℓ ∈ Z+ necessarily x ∈ W . Since F = G on V , the same
property is true for F .

Pick any point ξ ∈ DF(B) and pick k = τξ ≥ 0, without
loss of generality a positive integer, such that ϕ(t, ξ) ∈ B for
all t ≥ k. Let x = ϕ(k, ξ). Then F ℓ(x) = ϕ(k + ℓ, ξ) ∈ B
for all ℓ ∈ Z+, and therefore necessarily x ∈ W . We
have established that for each ξ ∈ DF(B) there is some
k such that F k, the time-k map of the flow f , is defined
at ξ and satisfies F k(ξ) ∈ W . It follows that DF(B) is
the union of the (countably many) sets Sk consisting of
those points x ∈ X such that F k(x) ∈ W . Thus it will
suffice to show that each set Sk has measure zero. Note
that F k is a local diffeomorphism, it being a time-k map
for a differentiable vector field. (It is not necessarily a
global diffeomorphism, so we cannot argue that (F k)−1(W )



is diffeomorphic to W . In fact, preimages may not even
belong to X.) Thus, there is an open neighborhood Nξ of
ξ in X that maps diffeomorphically by F k into an open
neighborhood Mξ of F k(ξ). By uniqueness of solutions in
time −k, the preimage of Mξ is exactly Nξ. Note that Sk

is included in the union Nk over ξ ∈ X of the sets Nξ.
Also, for each ξ, Nξ ∩ Sk maps diffeomorphically onto
Mξ ∩W , and therefore Nξ ∩ Sk has measure zero (because
W has measure zero and diffeomorphisms transform null sets
into null sets). Recall that Lindelöf’s Lemma (see e.g [31])
ensures that every open cover of any subset S of Rn (or more
generally, of any second-countable space) admits a countable
subcover. Applied to Nk, we have a countable subcover by
sets Nξk , and for each of these Nξk ∩ Sk has measure zero,
so Nk ∩ Sk = Sk has measure zero as well.

Proof of Corollary 1

For each x̄ ∈ E, we may pick by Theorem 4 a ball
Bx̄ ⊆ X of x̄ such that DF(Bx̄) has measure zero. The
union of the sets Bx̄ covers E. By Lindelöf’s Lemma applied
to S = E, we conclude that there is a countable subset
of balls {Bx̄k

, k ∈ Z+} which covers E. We claim that
CE ⊆

⋃
k DF(Bx̄k

). Since a union of measure zero sets
has measure zero, this will establish the claim. So pick
any ξ ∈ CE . Thus, ϕ(t, ξ) → x̄ for some x̄ ∈ E. Since
E ⊆

⋃
k Bx̄k

, it follows that x̄ ∈ Bx̄k
for some k. Since

Bx̄k
is a neighborhood of x̄, this means that there is some

τξ ≥ 0 such that ϕ(t, ξ) ∈ Bx̄k
for all t ≥ τξ. Therefore

ξ ∈ DF(Bx̄k
). This completes the proof.
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