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Abstract— It is often of interest to know which systems
will approach a periodic trajectory when given a periodic
input. Results are available for certain classes of systems, such
as contracting systems, showing that they always entrain to
periodic inputs. In contrast to this, we demonstrate that there
exist systems which are globally exponentially stable yet do not
entrain to a periodic input. This could be seen as surprising,
as it is known that globally exponentially stable systems are in
fact contracting with respect to some Riemannian metric. The
paper also addresses the broader issue of entrainment when an
input is added to a contractive system.

I. INTRODUCTION

Entrainment to a periodic input can be roughly described
(a precise definition is given below) as the property that every
solution of a given time-independent system will converge to
a unique periodic trajectory with the same period as a given
forcing periodic input. When this occurs is often of interest
in physical systems, see, for instance, [1]. Of course, this
property is true for stable linear systems. More generally,
it is known that if a system is contractive with respect to
a logarithmic norm, then it must entrain to periodic inputs
[2], [3], [4], and a similar result holds for systems that are
contractive with respect to arbitrary Riemannian structures
[4]. Furthermore, it is also known that if a system is globally
exponentially stable to an equilibrium (GES), then the system
is contractive with respect to a suitable Riemannian metric
[4], [5]. Stated in this vague fashion, it would seem that
any GES system must entrain to periodic inputs. We show
by means of a counterexample that this implication is false,
exhibiting a GES system and a periodic input to which the
system does not entrain.

We identify the gap in the above reasoning: GES implies
contractivity with respect to an arbitrary Riemannian metric,
but contractivity in the absence of an input is not equivalent
to contractivity when an input is present. On the other
hand, for constant metrics, defined by logarithmic norms,
contractivity of the unforced system implies contractivity
of the system with inputs. We go on to show that the key
property needed is uniform contractivity with respect to any
constant input.

II. BACKGROUND AND NOTATION

First, we will rigorously define entrainment:
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Definition 1: We say a function v : [0,∞) → Rp is
periodic with period T > 0 if v(t) = v(t+ T ) for all t ≥ 0.

We will apply the above definition both to inputs (p = m
below) and states (p = n).

Definition 2: Consider a system ẋ = f(x, u), with f :
Rn×Rm → Rn. We say that this system entrains to periodic
inputs if the following property holds: given a function (an
“input” or “control”) u : [0,∞) → Rm which is periodic
with period T , all solutions of ẋ(t) = f(x(t), u(t)) converge
to a unique limit cycle with period T .

We assume that the system dynamics f satisfies condi-
tions for existence and uniqueness of solutions, and forcing
functions are measurable essentially bounded, see e.g. [6].

We next define globally exponentially stable systems:
Definition 3: Consider a system ẋ = f(x, t), with f :

Rn × R → Rn and f(0, t) = 0 for all t. We say that this
system is globally exponentially stable, or just GES, if there
exists numbers λ > 0 and C > 0 such that, for any trajectory
x(t) and any time t0,

∥x(t)∥ ≤ Ce−λ(t−t0)∥x(t0)∥ for all t ≥ t0.
Here ∥.∥ is the usual Euclidean norm. We use Euclidean

norm only for simplicity, since our purpose is to construct
counterexamples, but more general norms could be used as
well, or simply distances from x(t) to 0 in an arbitrary metric
space. In our examples, the vector field f will be independent
of t, in which case we only need to consider t0 = 0.

III. LOSING ENTRAINMENT AND CONTRACTION

A. Example of a GES system which does not entrain

Consider the following two-dimensional system with two-
dimensional input (n = m = 2):

ẋ = −x+
x

2
sin(x2 + y2)− y + u1(t) (1)

ẏ = −y +
y

2
sin(x2 + y2) + x + u2(t) . (2)

Let r∗ be any positive value of r at which the function
f(r) = −r + r

2 sin(r
2). attains a strict local maximum. In

other words, r∗ must satisfy
sin(r2)

2 + r2 cos
(
r2
)

= 1.
and 3r cos

(
r2
)
− 2r3 sin

(
r2
)

< 0 . The smallest local
maximum is found numerically to be approximately r∗ =
2.79098840365914. Consider the periodic control (of period
2π)

u(t) =

(
u1(t)
u2(t)

)
= −

(
(−r∗ + r∗

2 sin((r∗)2)) cos(t)

(−r∗ + r∗

2 sin((r∗)2)) sin(t)

)
. (3)

We show next that the curve γ(t) = (r∗ cos(t), r∗ sin(t))
is a periodic trajectory (of period 2π) of our system
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with the given input. Indeed, plugging in the values
(r∗ cos(t), r∗ sin(t)) we get:

ẋ = −r∗ cos(t) +
r∗ cos(t)

2
sin((r∗ cos(t))2 + (r∗ sin(t))2)

−r∗ sin(t)− (−r∗ +
r∗

2
sin((r∗)2)) cos(t)

= −r∗ sin(t)

ẏ = −r∗ sin(t) +
r∗ sin(t)

2
sin((r∗ cos(t))2 + (r∗ sin(t))2)

+r∗ cos(t)− (−r∗ +
r∗

2
sin((r∗)2)) sin(t)

= r∗ cos(t) .

Note that the right hand side of the above two equations is
just the tangent vector to γ(t), and thus we can conclude that
γ(t) is in fact a trajectory. Its image is the circle of radius
r∗ centered at the origin.

Next, let us consider an arbitrary trajectory that starts at a
point of the form (x, y) such that x2 + y2 < (r∗)2. We will
use polar coordinates (r(t), θ(t)) to represent this trajectory,
so that x(t) = r(t) cos(θ(t)) and y(t) = r(t) sin(θ(t)). Thus
r(t) =

√
x(t)2 + y(t)2 along this trajectory and the initial

condition (x(0), y(0)) has the form in polar coordinates
(r(0), θ(0)), with r2(0) = x(0)2+ y(0)2. We will show that
r(t) is decreasing whenever r(t) < r∗ is sufficiently close
to r∗. We have that (note we are now suppressing that x, y
and r are all functions of t):

1

2

dr2

dt
= xẋ+ yẏ

= −(x2 + y2) +
x2 + y2

2
sin(x2 + y2)

− (x cos(t) + y sin(t))(−r∗ +
r∗

2
sin((r∗)2))

= −r2 +
r2

2
sin(r2)

− (r cos(t− θ))(−r∗ +
r∗

2
sin((r∗)2)).

If r is close enough to r∗ such that 0 > f(r)− f(r∗), then

− (r2) +
r2

2
sin(r2)− (r cos(t− θ))(−r∗ +

r∗

2
sin((r∗)2))

≤ −(r2) +
r2

2
sin(r2)− (r)(−r∗ +

r∗

2
sin((r∗)2)).

= r(f(r)− f(r∗)) < 0 .

Thus we see that any points in the interior of the circle r = r∗

and close enough to the trajectory γ(t) actually move away
from from γ(t), and thus we do not approach γ(t). Figure 1
illustrates this.

This system is equivalent to the following system in polar
coordinates:

ṙ = f(r) = −r +
r

2
sin(r2)

θ̇ = 1 .

Indeed, the motivation for this system was that we simply
want to “force” an unstable periodic orbit, such that points

Fig. 1. We plot two trajectories for our system defined by equations 1
and 2 with input 3: One with initial conditions at (r∗, 0) and one with
initial conditions at (r∗ − 0.1, 0). We see the trajectory starting at (r∗ −
0.1, 0) does not approach, and in fact diverges from, the periodic orbit
corresponding to the circle of radius r∗.

slightly closer to the origin move away from this periodic
orbit, showing that there is no global convergence to a unique
periodic orbit. This form of the system also makes it easy
to see that it is in fact GES, since we have that f(r) ≤ − r

2
for all nonnegative r, which implies that, for all solutions,

∥x(t)∥ ≤ e−
1
2 t∥x(0)∥ for all t ≥ 0 .

B. Example of losing contraction upon translation

A definition of contraction with respect to a state-
dependent (and time-independent) Riemannian metric on Rn

is given in [4]. We prefer to use the form given in [7],
Definition 1:

Given the n-dimensional autonomous system

ẋ = f(x) ,

a contraction metric is an n×n symmetric matrix M(x) that
is uniformly positive definite (that is, vTM(x)v ≥ a for all
x and v in Rn, for some a > 0) such that

∂f

∂x

T

M(x) +M(x)
∂f

∂x
+ Ṁ(x)

is uniformly negative definite, where the notation Ṁ(x) is
shorthand for the matrix whose (i, j)th entry is

Ṁ(x)ij =
∂Mij

∂x

T

f(x) .

Theorem 1 in [7] says that if a contraction matrix exists and
there is some equilibrium, then all trajectories converge to
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it. Moreover, under the stronger assumption that

∂f

∂x

T

M(x) +M(x)
∂f

∂x
+ Ṁ(x) ≤ − αM(x)

for all x, for some α > 0 (where A ≤ B means that
B − A is positive definite) then there is automatically
an equilibrium. The second result follows from the fact
that d(x(t), y(t)) ≤ e−(α/2)td(x(0), y(0)) along trajectories,
where d is the geodesic distance associated to the metric
M(x).

Let us consider now as an example the scalar system ẋ =
f(x) = −x+ x

2 sin(x2) where n = 1. One needs a function
m : R → R such that m(x) ≥ a > 0 for all x and

m′(x)f(x) + 2f ′(x)m(x) ≤ −βm(x)

for all x, where β > 0. In our case, we pick m(x) =
1/(sin(x2)/2 − 1)2, which is larger than 4/9 for all x, and
with f(x) = (x sin(x2))/2− x we have that

m′(x)f(x) + 2f ′(x)m(x) =
4

sin(x2)− 2

≤ −1/3

(sin(x2)/2− 1)2
.

Thus we see that for β = 1/3 our inequality is satisfied.
Indeed, this follows since

4(sin(x2)/2− 1)2

sin(x2)− 2
≤ 1

sin(x2)− 2
≤ −1

3
.

We next show that contractivity breaks down for this
metric if we add a constant input, i.e., we will consider the
system ẋ = f(x) + c. In this case we have that

m′(x)(f(x) + c) + 2f ′(x)m(x) =
4

sin(x2)− 2

+c
16x cos(x2)

(2− sin(x2))3

≥ c
16x cos(x2)

(2− sin(x2))3
− 4

≥ c
16x cos(x2)

27
− 4 .

If we pick c = 27
16 and x = 4

√
2π we see that our final

expression is clearly positive, and thus our system does not
contract everywhere with respect to this metric (despite the
fact that when c = 0, our system is contractive with respect
to this metric).

IV. CONSTANT AND NON-CONSTANT INPUTS, AND
ENTRAINMENT

In this section, we will first remark that uniform contractiv-
ity (and hence entrainment) under constant (additive) inputs
that take values in a given set B implies uniform contractivity
(and hence entrainment) under arbitrary inputs taking values
in B. We will then prove, however, that if B = Rn then the
only metrics for which this property can hold are constant,
but if B is bounded, there do exist non-constant metrics that
provide contractivity.

A. Connecting constant and non-constant inputs

Theorem 1: Consider the system with additive inputs ẋ =
f(x) + u, where the inputs take values u(t) ∈ U ⊂
Rn. Suppose that this system is uniformly contractive with
respect to a metric M(x), uniformly over all constant inputs
u(t) ≡ c ∈ U . Then the system is uniformly contractive
with respect to a metric M(x), uniformly on all inputs u
with values in U .
Proof. The assumption means that there is a constant β > 0
such that, for all x, and all g(x) = f(x) + c, c ∈ U , the
following inequality holds:

∂g

∂x

T

M +M
∂g

∂x
+ Ṁ ≤ −βM

(where M = M(x)). Here

Ṁ = Ṁ1 + Ṁ
[c]
2 ,

where we define

{Ṁ1}ij :=
∂Mij

∂x
f(x), {Ṁ [c]

2 }ij :=
∂Mij

∂x
c .

Thus we have an estimate, uniform on x and c,

∂f

∂x

T

M +M
∂f

∂x
+ Ṁ1 + Ṁ

[c]
2 ≤ −βM.

Now given an arbitrary input u with values in U , we’d like
to have

∂f

∂x

T

M +M
∂f

∂x
+ Ṁ1 + Ṁ

[u(t)]
2 ≤ −βM

for all t, where {Ṁ [u(t)]
2 }ij :=

∂Mij

∂x u(t). This is true
because u(t) ∈ U .

As a corollary we have, under the same assumptions,
entrainment to any periodic input u(t) satisfying u(t) ∈ U
for all t ≥ 0. This follows from a result from [4] which
states that if a system ẋ = f(x, u(t)) is contracting then we
have entrainment.

In Section V-B we will provide a version of Theorem 1
which applies to non-additive inputs, and is formulated in an
abstract metric space setup.

B. Metrics must be constant for contractivity under arbitrary
additive constant inputs

We next show that when U = Rn, uniform contraction
metrics under aditive inputs must be constant.

Theorem 2: Suppose we have a system ẋ = f(x) which is
contractive with respect to some metric M(x), where M(x)
is not constant. Then there exists a constant input c ∈ Rn

such that ẋ = f(x)+ c is no longer contractive with respect
to M(x).
Proof. Consider the system ẋ = f(x) + c, where c is a
constant vector. Since we are free to choose c as we please,
we will occasionally change c in the course of the proof. For
this system to be contractive we must have that

∂f

∂x

T

M +M
∂f

∂x
+ Ṁ ≤ 0.
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let us write Ṁ = Ṁ1+ Ṁ2 where {Ṁ1}ij = ∂Mij

∂x f(x) and
{Ṁ2}ij = ∂Mij

∂x c. Now we have that

∂f

∂x

T

M +M
∂f

∂x
+ Ṁ =

∂f

∂x

T

M +M
∂f

∂x
+ Ṁ1 + Ṁ2.

Since M(x) is not constant we can always find a vector x
and a vector c such that Ṁ2(x) is nonzero, as well as a vector
z such that α = zT Ṁ2(x)z ̸= 0. If α < 0, then replace c
with −c so that we will instead get that α > 0. Now assume
α > 0 and set

β = zT (
∂f

∂x

T

M +M
∂f

∂x
+ Ṁ1)z

Pick N such that Nα > |β|. Upon replacing c with Nc, we
have that

zT (
∂f

∂x

T

M +M
∂f

∂x
+ Ṁ1 + Ṁ2)z = β +Nα > 0.

Thus we see that given that M(x) is nonconstant, we can
always find a constant input c for which our system is no
longer contractive everywhere with respect to M(x).

C. Bounded additive controls have non-constant contrac-
tions

One might wonder if we can do better than the previous
theorem. Along these lines, one might ask: Does there exist
a bounded set B such that if we are uniformly contractive
for inputs taking values in B with respect to a certain metric
M , then our metric must be constant? This is not true, as
we will now show by means of a counterexample.

Proposition 1: Given an arbitrary bounded set B ⊆ R
there exists a one dimensional system ẋ = f(x)+u(t) such
that if u(t) ∈ B for all t ≥ 0, then there exists a non-constant
metric for which this system is contractive.
Proof. Using the notation from Theorem 2 we want to
establish the inequality

∂f

∂x

T

M +M
∂f

∂x
+ Ṁ1 + Ṁ2 ≤ −βM

for some particular choices of (non-constant) M and f .
Consider the system where f(x) = −x + c. For this our

equation looks like (c−x)∂M∂x ≤ (2−β)M . Suppose β = 1
and M(x) = 1 + ϵ(x). Then we have that our inequality
is equivalent to (c − x)ϵ′(x) ≤ 1 + ϵ(x) . Consider the
quantity ϵm(x) = e−x2/m. Substituting ϵm(x) for ϵ(x) in our
inequality we have that (c − x)ϵ′m(x) = −2x(c−x)

m e−x2/m.
Note that for large enough m, this expression goes uniformly
to 0 (because B is bounded), and so for large enough m we
will have that (c−x)ϵ′m(x) ≤ 1+ ϵm(x). Thus we have that
M(x) = 1 + ϵm(x) is a valid contraction metric for large
enough m.

V. GENERALIZATIONS AND COMMENTS

We discuss now several directions in which our results can
be generalized.

A. A more general sufficient condition forcing a metric to be
constant

We will use the following notation:
1) λmax(A) is the maximum eigenvalue of an arbitrary

matrix A.
2) ∥v∥2 is simply the Euclidean norm of an arbitrary

vector v.
3) ∥A∥2 =

√
λmax(ATA) for an arbitrary matrix A.

4) µ2(A) = λmax

(
A+AT

2

)
for an arbitrary matrix A.

The last three operations are a vector norm, its induced
matrix norm, and its induced logarithmic norm, respectively.
Logarithmic norms are routinely used in contraction theory,
and an early exposition is in the control textbook [8]. The
following elementary facts are well-known, but we include
proofs to make the exposition self-contained.

Lemma 1: If A and B are symmetric and A ≤ B, then
µ2(A) ≤ µ2(B).
Proof. First note µ2(A) is simply the maximum value of its
eigenvalues, for a symmetric matrix A. Suppose A’s max-
imum eigenvalue is larger than B’s maximum eigenvalue.
Then we have that if x is the corresponding eigenvector for
A that

xT (B −A)x

xTx
=

xTBx

xTx
− λmax(A)

≤ λmax(B)− λmax(A) < 0.

This a contradiction, and so we are done.

Lemma 2: We have that µ2(AB) ≤ ∥A∥2∥B∥2.
Proof. Note that for a symmetric matrix S we have that
λmax(S) ≤ |λmax(S)| ≤ ∥S∥2. We have that

µ2(AB) = λmax

(
AB + (AB)T

2

)
≤
∥∥∥∥AB + (AB)T

2

∥∥∥∥
2

≤ ∥A∥2∥B∥2

Recall that the convex closure of a set of point P is
indicated by conv(P ) and is the set of all points p such
that we can find a finite set of points O ⊂ P such that
p =

∑
i λioi, where λi ≥ 0,

∑
i λi = 1 and oi ∈ O.

Theorem 3: Suppose we have:
1) An n dimensional system ẋ = f(x, u).
2) k infinite sequences of constant inputs {ui,j} where

1 ≤ i and 1 ≤ j ≤ k.
3) For each fixed x there exists a large enough i0 so that

conv({ f(x,ui,j)
∥f(x,ui,j)∥2

}1≤j≤k) always contains a certain
open sphere O centered at 0 for i ≥ i0.

4) For any fixed j and for all x we have that.

lim
i→∞

∥∥∥∂f(x,ui,j)
∂x

∥∥∥
2

∥f(x, ui,j)∥2
= 0.

Then if our system is contractive with respect to a Rie-
mannian metric for each of our constant inputs, the metric
must be constant.
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Proof. First we fix an arbitrary x ∈ Rn. We will carry out
all our computations at this set x. We have our necessary
equation for contractivity:

∂f

∂x

T

M +M
∂f

∂x
+ Ṁ ≤ 0.

Now we can rearrange to get Ṁ ≤ −∂f
∂x

T
M −M ∂f

∂x . Now
upon taking the logarithmic norm µ2 of both sides we have
that

µ(Ṁ)2 ≤ µ2

(
−∂f

∂x

T

M −M
∂f

∂x

)

≤ µ2

(
−∂f

∂x

T

M

)
+ µ2

(
−M

∂f

∂x

)

≤ 2

∥∥∥∥∥−∂f

∂x

T
∥∥∥∥∥
2

∥M∥2 = 2

∥∥∥∥∥∂f∂xT
∥∥∥∥∥
2

∥M∥2.

Dividing by ∥f(x, ui,j)∥2 we get

µ2

(
Ṁ

∥f(x, ui,j))∥2

)
≤

2∥M∥2∥∂f
∂x

T
∥2

∥f(x, ui,j)∥2
−−−→
i→∞

0.

Thus we see that we have limi→∞ µ2

(
Ṁ

∥f(x,ui,j)∥2

)
≤ 0.

Now the lk’th entry of Ṁ
∥f(x,ui,j)∥2

is ∂Mlk

∂x
f(x,ui,j)

∥f(x,ui,j)∥2
. Here

∂Mlk

∂x is the gradient of Mlk and is a row vector with n
entries. Suppose we have a matrix G such that its lk’th entry
is {G}lk = ∂Mlk

∂x v where v ∈ Rn. Let α be positive real
number such that v ∈ αO. Now we can write

v =
∑
j

αi,j
f(x, ui,j)

∥f(x, ui,j∥
,

where we have that 0 ≤ αi,j ≤ α for large enough i
and all j (this follows from the fact that v ∈ αO ∈
α ∗ conv({ f(x,ui,j)

∥f(x,ui,j)∥2
}1≤j≤k)). Thus we have that

{G}lk =
∂Mlk

∂x
v =

∑
j

αi,j
∂Mlk

∂x

f(x, ui,j)

∥f(x, ui,j)∥2
.

Now let M i,j be the matrix with {M i,j}lk =
∂Mlk

∂x
f(x,ui,j)

∥f(x,ui,j)∥2
. We have that

µ2(G) ≤ α
∑
j

µ2(M
i,j) −−−→

i→∞
0.

Thus we have that µ2(G) ≤ 0 and by replacing v with −v
we also have µ2(−G) ≤ 0 which only happens when G = 0.
Thus we have that ∂Mlk

∂x v = 0 for all v, and so we must have
∂Mlk

∂x = 0. Since this is true at all x we must have that M(x)
is the constant matrix.

1) Example: Consider the systemẋẏ
ż

 =

−1 0 0
0 −1 0
0 0 −1

xy
z

+

1 0 0 −1
0 1 0 −1
0 0 1 −1



u1

u2

u3

u4

 .

Suppose we have that for all k that uk ≥ 0, and at most one
of u1, u2, u3 or u4 are nonzero. Take as four sequences of
controls

{uk,1, uk,2, uk,3, uk,4} =



k
0
0
0

 ,


0
k
0
0

 ,


0
0
k
0

 ,


0
0
0
k


 .

Where k is any positive integer. This sequence of controls
satisfies the conditions of our theorem. Indeed, we have that

f(x,uk,j)
∥f(x,uk,j)∥2

is simply a constant vector for each j, and thus
the convex closure of all 4 of these constant vectors always
contains an open ball. We also have that

lim
i→∞

∥∥∥∂f(x,uk,j)
∂x

∥∥∥
2

∥f(x, uk,j)∥2
= 0

since the numerator is always a constant, while the denom-
inator always goes to infinity.

Thus while we are contractive with regard to a constant
metric (such as the usual Euclidean metric), we are not
contractive with respect to a nonconstant metric.

2) Example: Consider the system ẋ = f(x) + c. Here
c ∈ Rn is our constant control, which we allow to take on
any value. We see that we have

lim
∥c∥2→∞

∥∥∥∂f(x,c)
∂x

∥∥∥
2

∥f(x, c)∥2
= lim

∥c∥2→∞

∥∥∥∂f(x)
∂x

∥∥∥
2

∥f(x) + c∥2
= 0

since the numerator does not depend on c, and the denomi-
nator goes to infinity as ∥c∥2 tends to infinity. We can also
always find n + 1 sequences of constant inputs ci,j such
that limi→∞ ∥ci,j∥2 = ∞ and conv({ f(x)+ci,j

∥f(x)+ci,j∥2
}1≤j≤n+1)

always contains a fixed open ball (e.g., take ci,j = ivj ,
where conv({vj}1≤j≤n+1) contains an open ball). Thus the
conditions of our theorem are satisfied, and thus we have
another proof of Theorem 2.

B. Contraction on a metric space

Suppose we are given a metric space M with metric d.
Refer to the space of mappings of M to itself as C(M).

Definition 4: The topology induced by its supremum dis-
tance on C(M) is the topology induced by the metric D on
C(M) defined by

D(f, g) = sup{d(f(x), g(x)|x ∈ M}.
Definition 5: Given two functions u, v : R → Rn their

concatenation uv at t0 is the function defined as

uv =

{
u when t < t0

v when t ≥ t0
Theorem 4: Suppose we have:
1) A metric space M with metric d.
2) The space of mappings of M to itself C(M) (give this

space the topology induced by its supremum distance).
3) The space of measurable, bounded, and locally inte-

grable functions from R → Rn (call this space LM ,
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give this space its supremum norm, where the norm is
Euclidean).

4) A mapping ϕ : LM × R× R → C(M) satisfying that
a) It is continuous in LM (given two arbitrary and

fixed entries for the other arguments)
b) ϕ(g, t2, t3)◦ϕ(f, t1, t2) = ϕ(gf, t1, t3) where gf

is the concatenation of the two functions at t2.
c) ϕ(f(t), t1, t2) = ϕ(f(t+ T ), t1 − T, t2 − T ) for

all T, t, t1, t2 ∈ R.
d) Whenever we have a compact set U ⊆ LM of

constant mappings then there exists λ < 0 such
that d(ϕ(f, 0, t)(x), ϕ(f, 0, t)(y)) ≤ eλtd(x, y)
for all x, y ∈ M, all t ≥ 0, and all f ∈ U .

Let Lct be the space of mappings produced by concate-
nating finitely many times functions from U , and let Lct be
the closure of this set. If we have f ∈ Lct and t1 > t2 then
ϕ(f, t1, t2) is a contraction.
Proof. First we will argue that all piecewise constant func-
tions also give us contractions. This is clear from the
requirement that ϕ(g, t2, t3) ◦ ϕ(f, t1, t2) = ϕ(gf, t1, t3).
Indeed, letting ϕg = ϕ(g, t2, t3) and ϕf = ϕ(f, t1, t2) we
have if d(ϕf (x), ϕf (y)) ≤ λ1d(x, y) and d(ϕg(x), ϕg(y)) ≤
λ2d(x, y) then we have

d(ϕg(ϕf (x)), ϕg(ϕf (y))) ≤ λ2λ1d(x, y).

Thus the composition of ϕf and ϕg still gives us a contraction
and so ϕ(gf, t1, t3) must be a contraction. It follows that if
we concatenation finitely many functions into a piecewise
constant function F , we will still have that ϕ(F, t1, t2) is
a contraction. Since any piecewise constant function (taking
on finitely many different values) can be produced in this
manner, we can conclude that for all F ∈ Lct that ϕ(F, t1, t2)
is in fact a contraction.

Now suppose we consider a compact set B ⊆ U of
constant functions, taking their image from a bounded
codomain in Rn. For each f ∈ B we have that
d(ϕ(f, t1, t2)(x), ϕ(f, t1, t2)(x)) ≤ eλ(t2−t1)d(x, y) where
λ is the contraction constant we know will work for all our
constant functions by condition 4(d).

Now suppose we have a piecewise constant function f
on the interval [t1, t2] and set ϕ(f(x), t1, t2) = ϕf . Suppose
our function takes on value ci on interval i of length αi(t2−
t1), where

∑
i αi = 1 and the ci are all contained in some

compact set B. Composing all these pieces as in property
4(b) of our conditions, we have that

d(ϕf (x), ϕf (y)) ≤ (
∏
i

eλαi(t2−t1))d(x, y)

= eλ(t2−t1)d(x, y).

Thus not only are our piecewise constant mappings con-
tractions, but there is a contraction constant λ that they all
satisfy (assuming we are taking our constant functions from
a bounded set).

Now for a general function f that can be approximated (in
supremum norm) by piecewise constant functions, note that
due to f being bounded its values are contained in a compact

set. Thus it can be approximated by piecewise constant
functions taking on values from a compact set. Thus all
these approximating functions have a universal contraction
coefficient λ < 0, and by continuity of ϕ we have that
ϕ(f, t1, t2) must also be a contraction.

Indeed, if we have a sequence of piecewise constant fi
converging to f so that ϕfi converges to ϕf , then we have
that for a given pair of points x, y ∈ M and for some ϵ > 0
that

d(ϕf (x), ϕf (y)) ≤ d(ϕf (y), ϕfi(y)) + d(ϕfi(x), ϕfi(y))

+ d(ϕfi(x), ϕf (x))

≤ e−λ(t1−t2)d(x, y) + ϵ.

Thus since we can pick ϵ to be arbitrarily small (it becomes
small as i → ∞) we have that

d(ϕf (x), ϕf (y)) ≤ e−λ(t1−t2)d(x, y).

This theorem, while abstract, applies concretely to or-
dinary differential equations. If we have a system ẋ =
f(x) + u(t) where u(t) is in a compact set B, f(x) is
smooth, and for u(t) constant our system is contractive, then
by Theorem 55 in [6] and Theorem 2 in [4] we have that
ϕ satisfies the required conditions and so we can use our
theorem. Thus if ẋ = f(x) + c is contractive for c in some
compact set B and if u(t) ∈ B for all t ≥ 0 then our system
will still be contractive. Thus if u(t) is periodic we will have
entrainment.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this conference paper we studied the connections be-
tween global exponential stability, contractions with respect
to constant and nonconstant metrics, and entrainment. In
the full version of this paper, we will describe additional
sufficient conditions for which a globally exponentially stable
system would in fact entrain to periodic inputs.
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