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Abstract

This paper generalizes our recent results on the null
controllable regions and the stabilizability of exponen-
tially unstable linear systems subject to symmetric ac-
tuator saturation. The description of the null control-
lable region carries smoothly from the symmetric case
to the asymmetric case. As to stabilization, we have to
take a quite di�erent approach since the development of
our earlier relies mainly on the symmetric property of
the vector �eld. Speci�cally, in this paper, we construct
a Lyapunov function from a closed trajectory to show
that this closed trajectory forms the boundary of the do-
main of attraction for a planar anti-stable system under
the control of a saturated linear feedback. If the linear
feedback is designed by the LQR method, then there is
a unique limit cycle which forms the boundary of the
domain of attraction. We further show that if the gain
is increased along the direction of the LQR feedback,
then the domain of attraction can be made arbitrarily
close to the null controllable region. This design can
be utilized to construct state feedback laws for higher
order systems with two exponentially unstable poles.

1 Introduction

We consider the problem of controlling exponentially
unstable linear systems subject to asymmetric actuator
saturation. This control problem involves basic issues
such as characterization of the null controllable region
and stabilizability on the null controllable region. These
issues have been focuses of study of and are now well-
addressed for linear systems that are not exponentially
unstable. For example, it is well-known [2, 8] that such
systems are globally null controllable with bounded con-
trols as long as they are controllable in the usual linear
system sense.

In regard to stabilizability, it is shown in [9] that
a linear system subject to actuator saturation can be
globally asymptotically stabilized by smooth feedback
if and only if the system is asymptotically null control-
lable with bounded controls (ANCBC), which, as shown
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in [2, 8], is equivalent to the system being stabilizable
in the usual linear sense and having open loop poles
in the closed left-half plane. A nested feedback design
technique for designing nonlinear globally asymptoti-
cally stabilizing feedback laws was proposed in [11] for
a chain of integrators and was fully generalized in [10].

The notion of semi-global asymptotic stabilization
on the null controllable region for linear systems sub-
ject to actuator saturation was introduced in [5]. The
semi-global framework for stabilization requires feed-
back laws that yield a closed-loop system which has an
asymptotically stable equilibrium whose domain of at-
traction includes an a priori given (arbitrarily large)
bounded subset of the null controllable region. In [5], it
was shown that, for linear ANCBC systems subject to
actuator saturation, one can achieve semi-global asymp-
totic stabilization on the null controllable region using
linear feedback laws.

On the other hand, the counterparts of the above
mentioned results for exponentially unstable linear sys-
tems are less understood. Recently, we made an at-
tempt to systematically study issues related to null con-
trollable regions and the stabilizability on them of ex-
ponentially unstable linear systems subject to actua-
tor saturation and gave a rather clear understanding
of these issues [3]. Speci�cally, we gave a simple ex-
act description of the null controllable region for a gen-
eral anti-stable linear system in terms of a set of ex-
tremal trajectories of its time reversed system. We also
constructed feedback laws that semi-globally asymptot-
ically stabilize any linear time invariant system with two
exponentially unstable poles on its null controllable re-
gion. This is in the sense that, for any a priori given
set in the interior of the null controllable region, there
exists a linear feedback law that yields a closed-loop
system which has an asymptotically stable equilibrium
whose domain of attraction includes the given set. One
critical assumption made in [3] is that the actuator sat-
uration is symmetric. The symmetry of the saturation
function to a large degree simpli�es the analysis of the
closed-loop system, it, however, excludes the applica-
tion of the results to many practical systems.

The goal of this paper is to generalize the results of [3]
to the case where the actuator saturation is asymmet-
ric. We take a similar approach as in [3] to characterize



the null controllable region. In studying the problem of
stabilization, we found the methods used in [3] to de-
rive the main results not applicable to the asymmetric
case, since the methods rely mainly on the symmetric
property of the saturation function. In this paper, we
propose a quite di�erent approach to these problems for
the asymmetric case.

The proofs are sketched or omitted due to space lim-
itation.

2 Preliminaries and Notation

Consider a linear system

_x(t) = Ax(t) + bu(t); (1)

where x(t) 2 Rn is the state and u(t) 2 R is the control.
Given u� < 0 and u+ > 0, let

Um=fu : u is measurable and u�� u(t) � u+; 8t 2 Rg:

A control signal u is said to be admissible if u 2 Um. In
this paper, we are interested in the control of the system
(1) by using admissible controls. Our �rst concern is
the set of states that can be steered to the origin by an
admissible control.

De�nition 2.1 A state x0 is said to be null controllable
if there exist a T 2 [0;1) and an admissible control u
such that the state trajectory x(t) of the system satis�es
x(0) = x0 and x(T ) = 0. The set of all null controllable
states is called the null controllable region of the system
and is denoted by C.

With the above de�nition, we have

C =
[

T2[0;1)

(
�

Z T

0

e�A�bu(�)d� : u 2 Um

)
: (2)

For simplicity, a linear system and the matrix A are
said semi-stable if all the eigenvalues of A are in the
closed left half plane; and anti-stable if all the eigenval-
ues of A are in the open right half plane.

We recall a fundamental result from [2, 6, 8]:

Proposition 2.1 Assume that (A; b) is controllable.

a) If A is semi-stable, then C = Rn.

b) If A is anti-stable, then C is a bounded convex open
set containing the origin.

c) If A =

�
A1 0
0 A2

�
with A1 2 Rn1�n1 anti-stable

and A2 2 Rn2�n2 semi-stable, and b is partitioned

as

�
b1
b2

�
accordingly, then C = C1 �Rn2 where

C1 is the null controllable region of the anti-stable
system _x1(t) = A1x1 + b1u(t).

Because of this proposition, we can concentrate on
the study of null controllable regions of anti-stable sys-
tems. For this kind of systems,

C =

�
�

Z
1

0

e�A�bu(�)d� : u 2 Um

�
; (3)

where C denotes the closure of C. We also use \@" to
denote the boundary of a set. In this paper, we will
derive a method for explicitly describing @C in Section 3.

In the study of the null controllable regions we will
assume, without loss of generality, that (A; b) is control-
lable and A is anti-stable.

Consider the time reversed system of (1):

_z(t) = �Az(t)� bv(t): (4)

De�nition 2.2 A state zf is said to be reachable if
there exist T 2 [0;1) and an admissible control v such
that the state trajectory z(t) of the system (4) satis�es
z(0) = 0 and z(T ) = zf . The set of all reachable states
is called the reachable region of the system (4) and is
denoted by R.

It is known that C of (1) is the same as R of (4) (see,
e.g., [6]). To avoid confusion, we will continue to use
the notation x, u and C for the original system (1), and
z, v and R for the time-reversed system (4).

3 Null Controllable Regions

In Section 3.1, we show that the boundary of the
null controllable region of a general anti-stable linear
system with saturating actuator is composed of a set of
extremal trajectories of the time reversed system. The
descriptions of this set are further simpli�ed for systems
with only real poles and for systems with complex poles
in Sections 3.2 and 3.3, respectively.

3.1 Description of the null controllable regions

We will characterize the null controllable region C of
the system (1) through studying the reachable region R
of its time reversed system (4).

Since A is anti-stable, we have

R =

�
�

Z
1

0

e�A�bv(�)d� : v 2 Um

�

=

�
�

Z 0

�1

eA�bv(�)d� : v 2 Um

�
:

Noticing that eA� = e�A(0��), we see that a point z
in R is a state of the time-reversed system (4) at t = 0
by applying an admissible control v from �1 to 0.

De�ne the asymmetric sign function sgna(�) as

sgna(r) :=

8<
:

u+ ; r > 0;
(u+ + u�)=2 ; r = 0;
u� ; r < 0:



It can be veri�ed that sgna(r) =
u++u�

2 + u+�u�

2 sgn(r),
where sgn(�) is the standard sign function.

Theorem 3.1

@R =

�
�

Z 0

�1

eA�b sgna
�
c0eA�b

�
d� : c 6= 0

�
: (5)

R is strictly convex. Moreover, for each z� 2 @R, there
exists a unique admissible control v� such that

z� = �

Z 0

�1

eA�bv�(�)d�: (6)

From Theorem 3.1, we see that if v is an admissible
control and there is no c such that v(t) = sgna(c

0eAtb)
for t � 0, then

�

Z 0

�1

eA�bv(�)d� =2 @R

and must be in the interior of R.
In what follows, we will simplify (5) and describe @R

in terms of a set of trajectories of the time-reversed
system (4).

Denote

E :=
�
v(t) = sgna

�
c0eAtb

�
; t 2 R : c 6= 0

	
; (7)

and for an admissible control v, denote

�(t; v) := �

Z t

�1

e�A(t��)bv(�)d�: (8)

Since A is anti-stable, the integral in (8) exists for all
t 2 R, so �(t; v) is well de�ned.

If v(t) = sgna(c
0eAtb), then

�(t; v) = �

Z t

�1

e�A(t��)bv(�)d�

= �

Z 0

�1

eA�b sgna
�
c0eAteA�b

�
d� 2 @R

for any t 2 R, i.e., �(t; v) lies entirely on @R. An
admissible control v such that �(t; v) lies entirely on
@R is said to be extremal and such �(t; v) an extremal
trajectory. From Theorem 3.1, it can be shown that E
is the set of extremal controls.

De�nition 3.1 v1; v2 2 E are said to be equivalent, de-
noted by v1 � v2, if there exists an h 2 R such that
v1(t) = v2(t� h) for all t 2 R.

The following theorem shows that @R is covered by
a minimal subset of the extremal trajectories.

Theorem 3.2 Let Em � E be such that for every v 2 E,
there exists a unique v1 2 Em such that v � v1. Then

@R = f�(t; v) : t 2 R; v 2 Emg: (9)

It turns out that for some classes of systems, Em can
be easily described. For second order systems, Em con-
tains only one or two elements, so @R can be covered by
no more than two trajectories; and for third order sys-
tems, Em corresponds to some real intervals. We will see
later that for systems of di�erent eigenvalue structures,
the descriptions of Em can be quite di�erent.

3.2 Systems with only real eigenvalues

It follows from, for example, [6, p. 77], that if A has
only real eigenvalues and c 6= 0, then c0eAtb has at most
n� 1 zeros. This implies that an extremal control can
have at most n � 1 switches. It was shown in [3] that
the converse is also true.

Theorem 3.3 For the system (4), assume that A has
only real eigenvalues, then

a) an extremal control has at most n� 1 switches;

b) any bang-bang control with n� 1 or less switches is
an extremal control.

It follows from Theorem 3.3 that Em can be chosen as
the set of bang-bang controls with n�1 or less switches
and the �rst switch is at t = 0. Denote z+e = �A�1bu+

and z�e = �A�1bu�, then we have,

Observation 3.1 @R = @C is covered by two bunches
of trajectories. The �rst bunch consists of trajectories
of (4) when the initial state is z+e and the input is a
bang-bang control that starts at t = 0 with u� and has
n� 2 or less switches. The second bunch consists of the
trajectories of (4) when the initial state is z�e and the
input is a bang-bang control that starts at t = 0 with u+

and has n� 2 or less switches.

Furthermore, @R can be simply described in terms
of the open-loop transition matrix:

@R =

("
n�1X
i=1

�(u� � u+)(�1)ie�A(t�ti)

� sgna (�(�1)
n) I

#
A�1b : t1 � t2 � � � � t � 1

)
;

with t1 = 0. For second order systems,

@R =

�
e�Atz+e �

Z t

0

e�A(t��)b u�d� : t 2 [0;1]

�

[

�
e�Atz�e �

Z t

0

e�A(t��)b u+d� : t 2 [0;1]

�
:

3.3 Systems with complex eigenvalues

For a system with complex eigenvalues, the set Em is
harder to determine. In what follows, we consider two
important cases.

Case 1. A 2 R2�2 has a pair of complex eigenvalues
�� j�, �; � > 0.



The set of extremal controls is

E = fv(t) = sgna(sin(�t+ �)); t 2 R : � 2 [0; 2�)g :

It is easy to see that

Em = fv(t) = sgna(sin(�t)); t 2 Rg

contains only one element. Denote Tp = �
�
, then

e�ATp = �e��TpI . Let

z�s =
�
1� e��Tp

��1 �
�u� + e��Tpu+

�
A�1b;

z+s =
�
1� e��Tp

��1 �
�u+ + e��Tpu�

�
A�1b:

It can be veri�ed that the extremal trajectory corre-
sponding to v(t) = sgna(sin(�t)) is periodic with period
2Tp, i.e.,

@R =

�
e�Atz�s �

Z t

0

e�A(t��)b u+d� : t 2 [0; Tp]

�

[

�
e�Atz+s �

Z t

0

e�A(t��)b u�d� : t 2 [0; Tp]

�

Case 2. A 2 R3�3 has eigenvalues �� j� and �1, with
�; �; �1 > 0.

a) � = �1. Then similar to Case 1,

Em = fv(t) = sgna(k + sin(�t)); t 2 R : k 2 [�1; 1]g :

b) � 6= �1. It can be shown that

Em = fu+; u�g [ fv(t) = sgna(sin(�t))g [ E3m:

where

E3m =
n
v(t) = sgna

�
�e(�1��)t + sin(�t + �)

�
:

� 2 [0; 2�)
o
:

Plotted in Fig. 1 are some extremal trajectories on
@R of the time-reversed system (4) with

A =

2
4 0:5 0 0

0 0:8 �2
0 2 0:8

3
5 ; B =

2
4 1

1
1

3
5 ;

u+ = 1, and u� = �0:5.

4 Domain of Attraction under Saturated

Linear State Feedback

Consider the open loop system

_x(t) = Ax(t) + bu(t) (10)

with admissible control u 2 Um. A saturated linear
state feedback is given by u = sata(fx), where f 2
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Figure 1: Extremal trajectories on @R, �1 < �.

R1�n is the feedback gain and sata(�) is the asymmetric
saturation function

sata(r) =

8<
:

u+; r > u+;
r; r 2 [u�; u+];
u�; r < u�:

Such a feedback is said to be stabilizing if A + bf is
asymptotically stable. With a saturated linear state
feedback applied, the closed loop system is

_x(t) = Ax(t) + b sata(fx(t)): (11)

Denote the state transition map of (11) by � : (t; x0) 7!
x(t). The domain of attraction S of the equilibrium
x = 0 of (11) is de�ned by

S :=
n
x0 2 Rn : lim

t!1
�(t; x0) = 0

o
:

Obviously, S must lie within the null controllable region
C of the system (10). Therefore, a design problem is to
choose a state feedback gain so that S is close to C. We
refer to this problem as semi-global stabilization on the
null controllable region.

We will deal with anti-stable planar systems in this
section. Consider the system (11). Assume that A 2
R2�2 is anti-stable. For the symmetric case where u� =
�u+, it was shown in [3] that @S is the unique limit
cycle of the system (11). This limit cycle is unstable
for (11) but is stable for the time-reversed system of
(11). So it can be easily obtained by simulating the
time-reversed system.

However, the method used in [3] to prove the unique-
ness of the limit cycle relies on the symmetric property
of the vector �eld. There is no obvious way to generalize
the method to the asymmetric case. In this section, we
will present a quite di�erent approach to this problem.
Actually, we will construct a Lyapunov function from
the closed trajectory, and show that the Lyapunov func-
tion decreases in time as long as the trajectory starts
from within the closed trajectory. Therefore, the open
set enclosed by the closed trajectory is the domain of
attraction.



Lemma 4.1 The origin is the unique equilibrium point
of the system (11) and there is a closed-trajectory.

Suppose that � is a closed trajectory. By the index
theory (e.g., see [4]), � must enclose the origin. Also, �
must have two intersections with one of the lines fx =
u+ or fx = u�, or both of them. Otherwise there would
be a closed trajectory completely in the linear region of
the vector �eld.

Proposition 4.1 Denote the region enclosed by the
closed trajectory � as 
, then 
 is convex.

The following theorem shows that under certain con-
dition, a closed trajectory � is the boundary of the do-
main of attraction.

Theorem 4.1 Let � be a closed-trajectory of the sys-
tem (11). Let the intersections of � with the line
f�A�1b : � 2 Rg be xb1 and xb2. If fxb1; fxb2 2
[u�; u+], i.e., the two intersections xb1 and xb2 are
between the two lines fx = u� and fx = u+, then
@S = �.

Proof. Denote the region enclosed by � as 
. Since

 contains the origin in its interior, we can de�ne a
Minkowski functional

�(x) := minf � 0 : x 2 
g:

Clearly, �(x) = 1 for all x 2 �. Since � is a trajectory
and the vector �eld _x in (11) is continuous, @�(x)=@x
exists and is continuous on �. Since 
 is bounded and
convex, it follows that @�(x)=@x 6= 0 for all x 2 �. Note
that @�(x)=@x is the gradient of the function �(x), so
it is perpendicular to the tangent of the curve � = fx 2
R2 : �(x) = 1g, which is _x. Therefore,

(@�(x)=@x)
0
_x = 0; 8x 2 �: (12)

De�ne a Lyapunov function as V (x) := 1
2�

2(x). It
can be veri�ed that for any constant � > 0,

�(�x) = ��(x); V (�x) = �2V (x)

and
@�(x)=@xjx=�x0 = @�(x)=@xjx=x0 :

Since @V (x)=@x = �(x)@�(x)=@x, so @V (x)=@x exists
and is continuous for all x 2 R2. With a detailed inves-
tigation of the vector �eld, it can be shown that for all
x 2 
, along the trajectory of the system (11),

_V (x) = (@V (x)=@x)0 (Ax + b sata(fx)) � 0:

It can also be shown that there exists no closed trajec-
tory within 
. Therefore, all the trajectories starting
from within 
 will converge to the origin. It follows
that @S = @
 = �. 2

The condition fxb1; fxb2 2 [u�; u+] in Theorem 4.1
is always true in a special case when the line f�A�1b :

� 2 Rg is in parallel to the line fx = u+. In the next
section, we will show that if f is designed by the LQR
method, then the line f�A�1b : � 2 Rg is in parallel
to the line fx = u+.In this case, any closed-trajectory
is the boundary of the domain of attraction and hence
there is a unique closed trajectory (a limit cycle). We
will further show that the domain of attraction S can
be made arbitrarily close to the null controllable region
C by simply increasing the feedback gain.

5 Semi-Global Stabilization on the Null

Controllable Region

We will be focused on second-order anti-stable sys-
tems. The result can be easily extended to higher-order
systems with two anti-stable mode with the technique
in [3]. In this section, we continue to assume that
A 2 R2�2 is anti-stable and (A; b) is controllable.To
state the main result of this section, we need to in-
troduce the Hausdor� distance. Let X 1;X 2 be two
bounded subsets of Rn. Then their Hausdor� distance
is de�ned as:

d(X 1;X 2) := max
n
~d(X 1;X 2); ~d(X 2;X 1)

o
;

where
~d(X 1;X 2) = sup

x12X1

inf
x22X2

kx1 � x2k:

Here the vector norm used is arbitrary.
Let P be the unique positive de�nite solution of the

following Riccati equation,

A0P + PA� Pbb0P = 0: (13)

Then the origin is a stable equilibrium of the system

_x(t) = Ax(t) + b sata(kf0x(t)) (14)

for all k > 0:5. Let S(k) be the domain of attraction of
the equilibrium x = 0 of (14).

Theorem 5.1 limk!1 d(S(k); C) = 0.

Proof. For simplicity and without loss of generality, we
assume that

A =

�
0 �a1
1 a2

�
; a1; a2 > 0; b =

�
0
�1

�
:

Since A is anti-stable and (A; b) is controllable, A; b can
always be transformed into this form. With this special
form of A and b, we have f0 =

�
0 2a2

�
and A�1b =�

�1
0

�
. Hence, the line f�A�1b : � 2 Rg is actually

the line x2 = 0 and it is between the two lines kf0x = u+

and kf0x = u� (x2 =
u+

2a2k
and x2 =

u�

2a2k
). Therefore,

the condition in Theorem 4.1 is satis�ed for all k >
0:5 and the closed-loop system has a unique limit cycle



which is the boundary of S(k). To visualize the proof,
@C and @S(k) for some k, are plotted in Fig. 2, where the
inner closed curve is @S(k) = �, and the outer dashed
one is @C.

For convenience, we proceed the proof with the time
reversed system of (14),

_z(t) = �Az(t)� b sata(kf0z(t)): (15)

Observe that � is also the unique limit cycle of this
system.

Recall that @C is formed by the trajectories of the
system _z = �Az�bv: one from z+e ( or z

+
s ) to z

�

e ( or z
�

s )
under the control v = u� and the other from z�e ( or z�s )
to z+e ( or z+s ) under the control v = u+. On the other
hand, when k is suÆciently large, the limit cycle must
have two intersections with each of the lines kf0z = u+

and kf0z = u�. Suppose that the trajectory starts at
the righthand side intersection with kf0z = u�, goes
clockwise and intersects the two lines successively at
time t1; t2; t3, see the points z(0); z(t1); z(t2) and z(t3)
in Fig. 2. We also note that from z(0) to z(t1), v =
sata(kf0z) = u� for the closed-loop system (15) and
from z(t2) to z(t3), v = u+. By comparing the two
closed trajectories � and @C, we can complete the proof
by showing that as k ! 1, z(0); z(t3) ! z+e (or z+s ),
and z(t1); z(t2)! z�e ( or z�s ). 2
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Figure 2: Illustration for the proof of Theorem 5.1

Example 5.1 Consider the open-loop system (1) with

A =

�
0:6 �0:8
0:8 0:6

�
, b =

�
2
4

�
, u� = �0:5 and u+ = 1.

We have f0 =
�
0:12 �0:66

�
. In Fig. 3, the bound-

aries of the domains of attraction corresponding to dif-
ferent f = kf0, k = 0:50005; 0:6; 0:7; 1; 2, are plotted
from the inner to the outer. It is clear from the �gure
that the domain of attraction becomes larger as k is
increased. The outermost dashed curve is @C.

6 Conclusions

In this paper we have studied the problem of con-
trolling a linear system subject to asymmetric actua-
tor saturation. The null controllable region of such a

−6 −5 −4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

Figure 3: The domains of attraction under di�erent feed-

back gains

system is �rst characterized. Simple feedback laws are
constructed to stabilize a system with no more than two
exponentially unstable open-loop poles. The feedback
law guarantees a domain of attraction that includes any
given compact set inside the null controllable region.
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